
UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI

Remo de Oliveira Gresta

Naming Analysis: Exploring Practices in
Object-Oriented Programming

São João del-Rei
2024

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI

Remo de Oliveira Gresta

Naming Analysis: Exploring Practices in Object-Oriented
Programming

Dissertação apresentada como requisito para
obtenção do título de mestre em Ciências
no Curso de Mestrado do Programa de Pós
Graduação em Ciência da Computação da
UFSJ.

Supervisor: Elder José Reioli Cirilo

Universidade Federal de São João del-Rei – UFSJ

Mestrado em Ciência da Computação

São João del-Rei
2024

Remo de Oliveira Gresta

Naming Analysis: Exploring Practices in Object-Oriented
Programming

Dissertação apresentada como requisito para
obtenção do título de mestre em Ciências
no Curso de Mestrado do Programa de Pós
Graduação em Ciência da Computação da
UFSJ.

Elder José Reioli Cirilo
Federal University of São João del-Rei

Vinícius Humberto Serapilha Durelli
Federal University of São João del-Rei

Bruno Barbieri de Pontes Cafeo
State University of Campinas

São João del-Rei
2024

Acknowledgements

First of all, I’d like to thank all my family, my mother Simone, my grandparents
Hélio and Araci, my partner Thauana, my father Romolo, my friends, and all the people
that support me all these years and made me who I am. Finally, I’d like to also thank
all members of the proletarian class, the worker class, those who actually transform the
world, we will win!

"Workers of the world, unite!"
- Karl Marx

Abstract

Currently, research indicates that comprehending code takes up far more
developer time than writing code. Given that most modern programming languages
place little to no limitations on identifier names, and so developers are allowed
to choose identifier names at their own discretion, one key aspect of code com-
prehension is the naming of identifiers. Research in naming identifiers shows that
informative names are crucial to improving the readability and maintainability of
programs: essentially, intention-revealing names make code easier to understand
and act as a basic form of documentation. Poorly named identifiers tend to hurt the
comprehensibility and maintainability of software systems. However, most computer
science curricula emphasize programming concepts and language syntax over nam-
ing guidelines and conventions. Consequently, programmers lack knowledge about
naming practices. This study is an extension of our previous study on naming prac-
tices. Previously, we set out to explore naming practices of Java programmers. To
this end, we analyzed 1,421,607 identifier names (i.e., attributes, parameters, and
variables names) from 40 open-source Java projects and categorized these names
into eight naming practices. As a follow-up study to further investigate naming
practices, we examined 40 open-source C++ projects and categorized 1,181,774
identifier names according to the previously mentioned eight naming practices. We
examined the occurrence and prevalence of these categories across C++ and Java
projects and our results also highlight in which contexts identifiers following each
naming practice tend to appear more regularly. Finally, we also conducted an online
survey questionnaire with 52 software developers to gain insight from the industry.
All in all, we believe the results based on the analysis of 2,603,381 identifier names
can be helpful to enhance programmers’ awareness and contribute to improving
educational materials and code review methods.

Keywords: Naming Identifiers, Program Comprehension, Mining Software Repos-
itories, Static Code Analysis

List of Figures

Figure 1 – Naming practices distribution over Java programming statements . . . 30
Figure 2 – Naming practices distribution over C++ programming statements . . . 31
Figure 3 – Naming practices distribution over programming statements 36
Figure 4 – Naming practices distribution over programming statements 36
Figure 5 – Respondents Demographics . 37

Figure 6 – View of a GitHub Workflow . 44

List of Tables

Table 3 – The top 10 names in Ditto category . 27
Table 4 – The most common names (Famed) . 28
Table 5 – Spearman correlation . 32
Table 1 – Java programs used in our experiment. 39
Table 2 – C++ programs used in our experiment. 40

Contents

1 Introduction . 10

2 Background . 13
2.1 Identifier Names . 13

2.1.1 Naming . 13
2.1.2 Names in Software Quality . 14

2.2 Continuous Delivery and Integration . 15

3 Exploring Naming Practices in Object-Oriented Programming 18
3.1 Goal and Research Questions . 18
3.2 Project Selection . 19
3.3 Names Extraction . 20
3.4 Survey Design and Sampling . 20
3.5 Extraction of identifiers in source code . 22

3.5.1 SrcML . 22
3.5.2 Identifying Identifier Names . 23

3.6 Naming Practice Categories . 24
3.6.0.1 Kings . 25
3.6.0.2 Median . 25
3.6.0.3 Ditto . 25
3.6.0.4 Diminutive . 26
3.6.0.5 Cognome . 26
3.6.0.6 Index and Shorten . 26
3.6.0.7 Famed . 27

3.7 Results . 27
3.7.1 RQ1: How prevalent are the naming practice categories? 29

3.7.1.1 Very Common Names . 32
3.7.2 RQ2: Are there context-specific naming practices categories? 33
3.7.3 RQ3: Do the naming practice categories carry over across different

Java and C++ projects? . 34
3.7.4 RQ4: What is the perception of software developers about the in-

vestigated naming categories? . 37
3.7.4.1 Respondents’ Demographics 37
3.7.4.2 Most Commonly Used Naming Practices 37
3.7.4.3 Most Commonly Used Naming Practices According to Con-

text . 38

4 Analyzing Identifier Names in CI/CD Context 41
4.1 GitHub Actions . 41
4.2 Name Analyzer Action . 42

4.2.1 Tool in Action . 43

5 Conclusion . 45
5.1 Threats to Validity . 47
5.2 Construct & Internal Validity . 48

Bibliography . 49
.1 Survey Questionnaire . 53

10

1 Introduction

Reading and comprehending source code plays a vital role in software development
(ALLAMANIS, 2014), especially when documentation is scarce or not available. Indeed,
several researchers have shown the value of comprehensible source code and their rele-
vance in software development tasks (BUTLER, 2010) (AVIDAN; FEITELSON, 2017)
(HOFMEISTER, 2017). Evidence suggests that choosing proper names for identifiers can
positively impact code comprehension (LAWRIE, 2007) (FAKHOURY, 2018). Therefore,
an important aspect of software comprehension is to understand the underlying concepts
embodied in the code by means of decoding identifier names (AVIDAN; FEITELSON,
2017). Although giving meaningful names to identifiers is a widely accepted best prac-
tice, coming up with proper names is challenging (DEISSENBOECK; PIZKA, 2006). As
stated by Host and Ostvald(HOST; OSTVOLD, 2007), even though naming is part of
daily life for programmers, it entails a great deal of time and thought: names should
convey to others the purpose of the code (MARTIN, 2008) and reflect the meaning of do-
main concepts (MARCUS, 2004). Meaningful identifier names are key to bridging the gap
between intention and implementation (WAINAKH, 2021). Therefore, given that poorly
chosen identifier names might hinder source code comprehension (SCHANKIN, 2018),
using meaningful identifier names is a recommended practice present in several coding
style guides and conventions.

According to the Java language naming conventions, names should be “short yet
meaningful” 1. In a similar fashion, the Google C++ style guide states that names should
be “as descriptive as possible” 2. Martin argues that programmers should choose intention-
revealing names as a way to avoid disinformation (MARTIN, 2008). He also advocates
that names have to contain meaningful distinctions and be descriptive (not abbreviated).
The GNU Coding Standards posit that programmers should not “choose terse names –
instead, [they should] look for names that give useful information about the meaning of
the variable”. Although programming communities and internationally renowned experts
have proposed best practices related to naming identifiers, little is known about the extent
to which programmers follow these naming practices (ARNAOUDOVA, 2016).

We argue that without proper guidance, programmers are more likely to adopt sub-
optimal naming practices, such as using number series or noise words. For instance, poor
naming practices might create the misconception that names like Person person1 and
Person person2 are intuitive and understandable. Such careless naming can hinder not
only code comprehension but also overall team communication. Indeed, the importance
1 oracle.com/java/technologies/javase/codeconventions-namingconventions.html
2 google.github.io/styleguide/cppguide.html

oracle.com/java/technologies/javase/codeconventions-namingconventions.html

Chapter 1. Introduction 11

of meaningful identifier names has been established in several studies. For example, re-
search has shown that full-word identifiers lead to better comprehension than single-letter
identifiers (HOFMEISTER, 2017). However, a significant portion of source code vocab-
ulary consists of acronyms, abbreviations, or concatenations of terms that are not easily
identifiable and do not follow any naming convention (DEISSENBOECK; PIZKA, 2006).
Another study found statistically significant associations between poor-quality names and
code quality issues reported by static analysis tools like FindBugs (BUTLER, 2010). As
expected, names chosen by one developer may not convey the intended meaning in a
collaborative context, impairing software comprehension. In recent works, experiments
were conducted on identifier naming and its impact on software maintenance in collab-
orative environments. The first study focused on the semantic similarity in identifier
naming (GRESTA; CIRILO, 2020). It was observed that source code generally maintains
an acceptable level of contextual similarity, with developers avoiding names outside the
default dictionary (e.g., domain-specific terms). Files with more changes and contribu-
tions from multiple developers tend to have better contextual similarity. In a subsequent
study, the phonetic similarity of names and the complexity of hard-to-pronounce English
words were analyzed (GRESTA; CIRILO, 2021). It was found that many analyzed names
contain hard-to-pronounce words, leading to a significant overall word complexity score in
projects. Therefore, we argue that it is crucial for software engineering researchers to learn
how to support programmers by understanding how naming practices are used “in the
wild” and, through this better understanding, defining naming guidelines for educational
materials (CHARITSIS, 2021) and code review (NYAMAWE, 2021).

To investigate how C++ and Java programmers name attributes, parameters,
and variables, we carried out an empirical study in which we analyzed 1,421,607 iden-
tifier names from 40 open-source Java projects and 1,181,774 identifier names from 40
open-source C++ projects. In the first part of the study, we used mined repositories to
determine how often eight categories of naming practices are within and across these
projects. We also looked at how prevalent these naming practices are in certain code con-
texts (i.e., attribute, parameter, method, for, while, if, and switch). Moreover,
to understand the industry practices, we conducted an online survey questionnaire to gain
insight from software programmers. Throughout a survey, we gathered quantitative data
on programmers’ perceptions about the use and occurrence of the investigated naming
practices. The online survey questionnaire ran from November 2021 to January 2022 and
had 52 responses.

In this work, we also developed a static analysis tool that evaluates identifier
names, categorizing them based on naming practices identified in our empirical study.
Our goal with this tool is to increase awareness of poor naming conventions among de-
velopers, promoting better practices and improving code quality. The tool scrutinizes the
morphological aspects of words used in identifier names, assessing the potential impact of

Chapter 1. Introduction 12

naming patterns on the overall quality of the code. Recognizing the crucial role of identi-
fier names in software development (BUTLER, 2010), and the significant improvements
possible through continuous testing and validation, we have implemented our tool as a
plugin to a CI/CD pipeline.

As a result of our study, we can make the following contributions:

∙ Developers tend to preserve an acceptable level of contextual similarity among
names in the source code

∙ Developers tend to use existing words to name identifiers, that is, they usually avoid
the use of out-of-the-dictionary (e.g., domain) words

∙ Our results show that the naming practice categories (Kings, Median, Ditto, Diminu-
tive, Cognome, Shorten, Index, and Famed) appear in all 80 open-source projects
and are prevalent in practice;

∙ We identified the most common names across projects. The Top-3 recurrent names
are value; result; and name. Many single-letter names are also commonly used in
projects (e.g., i, e, s, c). We also observed that the majority of common names are
associated with integer or string values;

∙ We perceived that programmers’ naming practices are context-specific. Single-letter
names (Index and Shorten) seem to be more present in conditional or loop state-
ments (IF, FOR, WHILE). In contrast, identifiers with the same name as their
Types tend to appear in large-scope contexts (e.g., ATTRIBUTE);

∙ We noted that, in general, the project’s characteristics might not impact the preva-
lence of one particular naming category practice;

∙ We observed that Diminutive is the most adopted naming category practice by
survey respondents and Median is the least one. This result seems to align well
with our observation about the prevalence of naming practices in 80 open-source
object-oriented programs.

∙ The development of a tool used to detect the presence of eight different naming
categories that could be harmful to the code’s comprehension.

13

2 Background

This chapter presents some background about identifier naming, names, and Con-
tinuous Integration and Continuous Deployment process. We introduce this section by
presenting an overview of the role of names in software development and their impor-
tance in the field.

2.1 Identifier Names

2.1.1 Naming

According to Deissenboeck et al. (DEISSENBOECK; PIZKA, 2006), approxi-
mately two-thirds of any regular source code is composed of identifier names. Names
identify classes, attributes, methods, variables, and parameters (LAWRIE, 2006), but they
are also, alongside comments, the main sources of domain information. Originally designed
to represent values in memory (TOFTE; TALPIN, 1997), identifier names have now be-
come the primary source of information in software development (LAWRIE, 2006)(DEIS-
SENBOECK; PIZKA, 2006). Programmers rely on existing names in their code compre-
hension process (TAKANG, 1996). An identifier’s name can be a fully spelled word, an
abbreviation of a word, or a combination of two or more words. Names might also involve
words that do not actually exist or even be single alphabetical characters. In general,
a fully spelled word is more descriptive than a single character. Indeed, the proper use
of names has been recognized as a major issue in software development. Lawrie et al.
(LAWRIE, 2006), have shown that the use of full-word names for identifiers assists devel-
opers in maintainability tasks. In their study, developers were able to better understand
code snippets in contexts where full words were chosen as names, instead of single-letter
variants. Naturally, choosing low-quality or unrelated names results in source code that
is more difficult to maintain and can be associated with bugs (LI, 2018)(KAWAMOTO;
MIZUNO, 2012)(BUTLER, 2010).

Indeed, high-quality names have a significant influence on the comprehension of
source code (AVIDAN; FEITELSON, 2017). Arnaoudova et al. (2016) have acknowledged
the critical role that the source code lexicon plays in the psychological complexity of soft-
ware systems and coined the contradictory expression “Linguistic Antipatterns” (LAs) to
denote poor practices in the naming, documentation, and choice of identifiers that might
hinder program understanding (ARNAOUDOVA, 2016). They argue that poor practices
might lead programmers to make wrong assumptions and waste time understanding source
code (ARNAOUDOVA, 2016). Deissenboeck and Pizka (2006) characterized a name as be-

Chapter 2. Background 14

ing a fully spelled word or even an abbreviation (DEISSENBOECK; PIZKA, 2006). Names
can also be composed of two or more words, might include words that do not exist, or
even be single alphabetical characters. However, the proper use of words in names is a sig-
nificant issue in software development (FEITELSON, 2020). In Martin’s book (MARTIN,
2008), Tim Ottinger drew a series of simple rules to guide programmers on naming iden-
tifiers. According to Ottinger, programmers have to focus on creating intention-revealing
names (the name by itself should be capable of informing what it does). They also have
to avoid using non-informative words (e.g., words with multiple meanings, words with
little differentiation between themselves or number series). Ottinger also advocates that
names should be pronounceable and searchable. For instance, it is impractical to dis-
cuss any source code composed of words that programmers cannot pronounce in a code
review session. Coding style guides and conventions also aim to address the naming iden-
tifiers’ challenges (SANTOS; GEROSA, 2018). However, they are usually hard to enforce
rules, as others discussed in Martin’s book (Clean Code) (MARTIN, 2008). Caprile and
Tonella (2000) proposed an approach for improving the meaningfulness of identifier names
(CAPRILE; TONELLA, 1999). The approach entails the following steps: (i) extracting
identifier names; (ii) normalizing identifier names; and (iii) applying the changes to the
source code. The proposed rules for creating meaningful names aim to guarantee that
each word composing a name must belong to a dictionary of standard words and be com-
pliant with existing grammar. Deissenboeck and Pizka (2006) proposed a set of precise
rules for constructing concise and consistent names (DEISSENBOECK; PIZKA, 2006).
In the interest of preserving consistency, the authors advocate that a single name must
represent only one concept. The rules, therefore, ensure that one concept will not be taken
into consideration in multiple identifier names. In order to preserve conciseness, the rules
ensure that names chosen by programmers stand for the concepts they are indeed trying
to convey. More recently, Feitelson et al. (2020) suggested a three step method to help
programmers to systematically come up with meaningful names. The model encompasses
the following steps: (i) selecting the concepts to include in the name; (ii) choosing the
words to represent each concept; and (iii) creating a name from these words (FEITEL-
SON, 2020). The authors demonstrated that programmers could use the model to guide
choosing names that are superior (in terms of meaningfulness) over randomly chosen
names.

2.1.2 Names in Software Quality

Numerous studies have investigated the impact of naming on code comprehension
and programmer efficiency. Avidan and Feitelson conducted an experiment in 2017 with
ten programmers to understand the influence of identifier names on program comprehen-
sion (AVIDAN; FEITELSON, 2017). They found that identifiers with fully spelled words
were perceived as more understandable compared to their single-letter counterparts. Simi-

Chapter 2. Background 15

larly, Hofmeister et al. concluded that abbreviations and single-letter names diminish code
comprehension and could be indicative of low-quality code, aligning with observations by
Butler et al. (2010) and Kawamoto and Mizuno (HOFMEISTER, 2017)(KAWAMOTO;
MIZUNO, 2012)(BUTLER, 2010). Butler et al. demonstrated in 2010 that source code
containing poor quality identifier names were associated with FindBugs warnings (BUT-
LER, 2010). Kawamoto and Mizuno noted that concise identifier names significantly affect
fault-proneness in NetBeans (KAWAMOTO; MIZUNO, 2012). Takang et al. conducted
a survey in 1996 with 89 computer science students, deduced that combining identifier
names with comments in code marginally improves comprehension (TAKANG, 1996).
Therefore, enhancing identifier names appears to be more beneficial than adding com-
ments. Lawrie et al. observed that spending more time on selecting meaningful identifier
names can reduce the workload during software maintenance (LAWRIE, 2007). Low-
quality names can detrimentally impact code by causing confusion and misinformation.
The study by Lawrie et al. (2007a) also found that the quality of identifier names im-
proves over time and is associated with the software license. Modern software systems
tend to contain higher-quality names, with proprietary software featuring more abbrevi-
ations than open-source projects. Furthermore, a study examining the semantic nature
of identifier names in four large-scale open-source projects revealed that the number of
commits and contributors tends to influence the quality of names. Projects with a high
number of commits and contributors usually have more identifier names with a substantial
text corpus of existing words (GRESTA; CIRILO, 2020).

2.2 Continuous Delivery and Integration
Continuous Integration and Continuous Delivery (CI/CD) are a set of practices

in DevOps designed to optimize the quality process off releasing software. That includes
software testing, frequency of commits per day, version control etc (SKA; SYED, 2019).
These process range from developing stage, testing, production and monitoring. CI/CD
are a part of the Continuous software engineering, that aims to develop, deploy and get
quick feedback from software and customer in a fast cycle (SHAHIN, 2017). Alongside
Continuous Integration and Delivery there is also Continuous Deployment, that aims to
apply automatically deployment of the application into production.

One of the goals that CI intend to achieve is to have shorter release cycles, im-
proving code quality and team productivity (SHAHIN, 2017). In CI, team members are
encouraged to integrate and merge their work in short periods of time, including software
testing and automate software building (SKA; SYED, 2019). The practice of putting
together automate software build and test with faster integration’s are a manner to dis-
cover in earlier stages possible bugs and code smells. Another advantage in performing
continuous integration is to make it easier presenting and validating new releases of the

Chapter 2. Background 16

software. Continuous integration focus on committing to the code base more frequently,
for example once commit a day in company of automated build and tests, such as running
all unit tests and approving the commit only with a certain percentage of the code base
was checked, and all test were passed. If all tests were passed, and the developer’s team
also implement Continuous Delivery, a set of acceptance tests are applied to the code, in
order to check whether the code have any regression in any feature (RANGNAU, 2020).
This behavior of often committing and testing make it easier to find bugs, improve code
quality, reduced time for backtracking old code, and also reduce integration risks between
coworkers (SHAHIN, 2017). With mode regularity in commits, the risk of having merge
problems is lower, since that fewer lines of code are getting merged into the code base.

Inside the process of Continuous Delivery, a developer can integrate several static
analysis tools to validate different aspects of the source code. Static analysis tools are
widely used in the development of software and can, for example, be used to reduce bugs
from security, memory, data typing to check coding styles and guidelines, reveal code
smells, etc (LOURIDAS, 2006). A static source code analyzer tool analyzes the source
code without actually executing it, they use data flow analysis, control flow analysis,
interface analysis, and path analysis of source code, and are used to improve software
quality by detecting potential defects and problematic code constructs in early devel-
opment process (PRÄHOFER, 2012). A study that inspected the use of different static
analysis tools found that those tools are an effective way of detecting critical defects, are a
relatively affordable fault detection technique, and that a large percentage of errors made
by developers detected by those tools had the potential to cause security vulnerabilities
(ZHENG, 2006).

As noted above, static analysis tools have the ability to discover bugs, security
issues, and inconsistencies in coding guidelines by analyzing the source code, without
running the program (LOURIDAS, 2006). Because of that behavior, static analysis tools
can integrate well in the first steps of a CI/CD pipeline. Using these tools within a pipeline
ensures that they are going to be used automatically, preventing potential hazards in the
program. Used in the early steps of a CI/CD pipeline, alongside automated tests, is a
way to detect issues and correct them before the creation of pull requests and the need
for code review. The next sections will demonstrate the development of a static analysis
tool that focuses solely on inspecting identifier names chosen by developers. Regarding
the importance of checking the source code for possible bugs and potential comprehension
troubles before the process of building and deploying, our tool can be used to find potential
naming hazards that can lead to difficulty in comprehending source code.

Through the consistence application of Continuous Integration, developers can
achieve Continuous Delivery, in which software can be released to production at any time
(FOWLER; FOEMMEL, 2006). With the aid of CI, like making small changes regularly,

Chapter 2. Background 17

with testing and quality checks, and alongside deployment automation to allowing the
application to be always in a production-ready state (SHAHIN, 2017). Continuous Deliv-
ery is performed right after a successfully Continuous Integration process, and followed
by a preparation for building and deploying to a desired stage. This process enable the
developer to test the software with real-life scenarios, for example with integration tests,
UI tests, depending on the desired amount of tests in each production stage (SINGH,
2019).

Continuous Delivery can be achieved by constantly applying CI practices and
maintaining a real-time infrastructure that monitors, give alerts, that can give fast feed-
back, often through a CI/CD Pipeline. This Pipeline is used to automate the process of
building and testing the application, and is separated into different stages. Each stage is
responsible for a part of the process, such as build, test, quality check, merge and deploy-
ment (FOWLER; FOEMMEL, 2006). The main difference between Continuous Delivery
and Continuous Deployment is that in the second one every change that is applied to the
pipeline gets into production, and the first the merge into production can happen, the
code is at a state of production-ready, but not necessarily is merged into production, due
to integration strategies. Applying correctly the principles of CD in a software project
can create benefits to the development, such as a reduced deployment risk, believable
progress and quick user feedback (FOWLER; FOEMMEL, 2006). These befits leverages
the CDs smaller changes enabling more control over the process of validating changes,
without wasting time developing a whole new feature with no quick feedback.

18

3 Exploring Naming Practices in Object-
Oriented Programming

We conducted an empirical study to characterize how C++ and Java programmers
name attributes, parameters, and variables. Specifically, we analyzed 1,421,607 identifier
names (i.e., attributes, parameters, and variables names) from 40 Java projects and cate-
gorized these names into eight naming practice categories. Afterwards, we expanded our
analysis by selecting a sample of 40 C++ projects. Upon analyzing this sample, we found
1,181,774 identifier names, which we then categorized according to the aforementioned
eight naming practice categories. We used the results of categorizing identifier names
from these two samples to provide answers to the research questions.

3.1 Goal and Research Questions
We set out to probe into how common eight naming practices are “in the wild”

(i.e., in real world software systems) – see Section 3.2. Each category was created by
us, based on coding conventions and guidelines, and each one of them has the potential
to produce hazards in software development. More specifically, our goal is to contribute
towards a better understanding of their prevalence in attributes, parameters, and variables
naming in Java. We believe a more insightful interpretation of the results of our study
can be obtained from the standpoint of a researcher interested in helping programmers
by defining naming guidelines for educational material and code review and aiding the
development of tools that can contribute to identifying potential naming hazards. Our
main goal is to provide answers to the following research questions (RQs):

∙ RQ1: How prevalent are the eight naming practices categories?

We set out to investigate whether identifier names in open-source projects can be
categorized according to eight naming practices categories and how common these
naming practices are across C++ and Java projects;

∙ RQ2: Are there context-specific naming practices categories?

We set out to examine if specific naming practice categories tend to occur more
often in certain contexts (e.g., attribute, parameter, method, if, for, while,
switch);

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 19

∙ RQ3: Do the naming practice categories carry over across different
C++ and Java projects?

We attempt to explore the prevalence of the categories spanning multiple C++ and
Java projects and identify any correlation between software metrics and program-
mer’s naming practices;

∙ RQ4: What is the perception of software developers about the investi-
gated naming categories?

We set out to probe into programmers’ perceptions regarding the use and occurrence
of the eight investigated naming practices.

3.2 Project Selection
Our sample comprises 40 open-source Java projects and 40 C++ projects hosted

on GitHub. These projects are listed in Tables 1 and 2. We included widely used projects,
most of which have been under development for at least five years (e.g., fastjson,
jenkins, junit4, mockito, retrofit, spring-boot, tomcat, pytorch, and tensorflow).
Also, some projects were taken into account because they appear in a curated list of “awe-
some” projects.1 Table 1 and 2 give an overview of the examined projects. As shown in
these tables, our Java and C++ samples cover somewhat small codebases (with less than
10K LoC) and large-scale ones (with over 100K LoC). Overall, we selected heterogeneous
Java and C++ projects from a broad range of domains: e.g., software testing, game design,
web applications development, image manipulation, and natural language processing. The
selected projects also have a reasonable number of attributes, parameters, and variables
names and were developed collaboratively by a diverse group of programmers. There-
fore, we consider that we have selected a somewhat representative set of Java and C++
projects.

The Java projects were collected in July 2021 from GitHub by cloning and storing
their respective repositories. In a similar fashion, we extracted the information from the
selected C++ projects in January 2022. After storing the repositories, we extracted three
common software metrics: (i) the total lines of code (we excluded non-functional code
such as comments and white-spaces); (ii) the number of commits; and (iii) the number
of contributors. To answer RQ3, we correlated these metrics with the prevalence of the
categories in projects.
1 java-lang.github.io/awesome-java

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 20

3.3 Names Extraction
In order to extract identifier names from each project, we created a parser based on

the SrcML tool (COLLARD, 2013). SrcML is a multi-language parsing tool for the anal-
ysis and manipulation of source code. SrcML turns source code into a document-oriented
XML format, which allows for queries using XPath. For example, the srcML format con-
tains structural information (markup tags) about identifier declarations (<decl_stmt>),
associated types (<type>), and context (<block>).

We extracted 2,603,381 names from the 80 collected projects, and after applying
the naming categorization, we get a total of 753,811 identifier names distributed across
the categories (Kings, Median, Ditto, Diminutive, Cognome, Index, Shorten) as shown in
Tables 1 and 2. The experimental package is available in Github 2.

To investigate and get an overview of the elements in the Famed category, we used
the entire dataset extracted from both programming languages. We examined the name
of each extracted identifier and the associated Type to answer RQ1 and RQ3. Therefore,
for each naming category practice we report the occurrences in the studied projects and
across them. To answer RQ2 we analyzed the context where identifiers were declared.

3.4 Survey Design and Sampling
To answer 𝑅𝑄4 we designed an online questionnaire containing fifteen closed ended

questions related to naming practices. A brief description (in Portuguese) and an example
accompanied these questions (see Appendix A). We also included two initial questions to
collect the demographic information of the respondents. The respondents had to point out
their experience in software development as a single choice from four options: under two,
two to five, six to 10, or over ten years; and also their education level (undergraduate,
graduate, postgraduate). We selected the web-based questionnaire to conduct our survey
because it maximizes the number of possible respondents. The Google Forms was chosen to
host the questionnaire and enable data collection and pre-processing. The questionnaire
was first trialed within the authors’ organizations, with one of the authors registering
possible observed issues. Some minor adjustments were made to ensure the consistency
and clarity of the questions. Finally, the questionnaire link was posted to multiple websites
(e.g., forums) and online groups (e.g., discord, whatsapp).

The overall purpose of this research is to study and analyze names chosen by
developers to be used as identifiers, such as variables, attributes, method names and so
on. We chose Java and C++, both object-oriented languages(OO), to be the composite
the programming languages that are going to be studied. This choice was made on the
2 github.com/rng-lab/naming-practices-analysis

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 21

idea that OO languages instigates the developer to chose descriptive names, because of
the idea that OO languages represents ans abstraction of the problem that is trying to be
solved. If the developer is programming an API with Java to create a payment systems,
it is logical to chose names that are on board with this scenario. Probably the developer
is going to use names such as "credit", "deposit" and "loan", because they are attached
with the context provided by the abstraction of the problem’s scenario. This motivation,
alongside the fact that Java and C++ are broadly used in several situations and contexts,
made us chose these two languages to composite our language arsenal.

This study is divided in two parts, the first consisting in calculating similarities
between words in similar scopes, and the second one consists in defining name categories,
and checking how these categories prevail in identifiers present in these projects, or "in
the wild". The projects that we’ve chosen were used equally by both of the parts of this
study, consisting in 40 Java projects and 40 C++ projects. In the direction of having
better results, regarding different naming practices and the semantics of the words, we
searched for projects with different domains of application. We thought that a large num-
ber of projects, arising from a diverse set of domains, would benefit the output of this
research. These domains goes from a wide range, such as: NLP projects, editing and image
manipulation projects, unit tests suites, computer vision projects, web frameworks, game
design libraries and much more. We believe that this wide range of application domains
could benefit our results and the quality of our study, limiting the influence of having a
lot of projects regarding few domains. This would cause an negative impact, because a
domain can have an direct impact on the names used by the developers, as we saw earlier,
and this had to be diminished. For example, a certain domain could have a lot of specific
words, that could not be possible to replicate to others domains, harming the result of
the study. So, with 80 different projects from 2 OO programming languages, was possible
to focus solely on the identifiers present in the projects, and not on their particular cases.

In total, we have chosen 80 different projects, divided equally between Java and
C++ open-source projects. Regarding the size and impact of the projects, we opted to
provide a wide range of sizes, including relatively small projects, with dozens of contrib-
utors and a few thousand commits, to considerable large projects, containing hundreds
of contributors and hundred thousand commits. But all those projects, disregarding their
size, are open-source projects, that are relevant in their respective domains. The table 1
illustrates all projects, alongside some information about them, such as: number of com-
mits, number of contributors and quantity of lines of code. All of those projects mentioned
above were discovered in a Github repository called "awesome-projects", in which displays
several open-source repositories in different fields. Doing so, we believe that the quantity,
size, different domains and relevance of the projects we’ve chosen contributed with the
success of this study, and were more than enough to recall significant information about
them.

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 22

3.5 Extraction of identifiers in source code
After choosing all 80 C++ and Java projects, the next step was to develop a

tool capable of going through all files in the source code, analyzing them, identifying the
identifiers, and storing them in a CSV file. Not only the names of those identifiers were
relevant to our study, but also some information about them, such as their types, the
class and/or method they were declared, and if they were declared within some scope
such as inside a for loop, an if condition, or a while loop. This information was useful for
defining naming categories, which are going to be displayed in the following sections. In
total, 1.421.607 identifier names were collected in projects written in Java, and 1,181,774
identifiers were collected in C++ projects.

In the first study, the meaning of identifier names was compared between them,
respecting their scope and class. Hence, it is essential to extract not only the attributes
or variables but also the name of the class and method in which they were declared.
The tool we have developed recognizes the declaration of an identifier and stores it in a
CSV containing these respective fields: name, type, scope, class, method (if it is variable),
filename, and project. With this information, we could link an identifier with the context
in which they were found. Collecting the type of identifier enabled the insight into some
naming categories.

The first step of the development process was to use a tool to ease the finding
of the identifier names present in the projects. We used a tool that made the process of
verifying if a word in the file was an identifier or other elements present in the source
code, such as reserved words and imports. To achieve that, we used a tool called SrcML,
which converts the source code into an XML (Extensible Markup Language) file. This
XML file represents aspects of the source code in the form of tags, including identifier
declarations, that made it possible to analyze the source code more efficiently.

3.5.1 SrcML

As mentioned, a tool named SrcML was used to assist in the process of collecting
identifier names from the source code that was found. With SrcML is possible to convert
Java or C++ files from a program to its own XML version, making it easier to identify
those identifiers. Alongside Java and C++, there are other programming languages sup-
ported by SrcML, with few differences between them, such as specific tags for specific
language commands.

The source code is represented by markup tags presented in an XML file, which
every reserved word or command has its own tag, and respects the hierarchy contained in
the original file. In a Java file, for instance, there is a root tag, representing the original
class, and several other tags, such as tags for methods and attributes, that are considered

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 23

children from the root tag. Markup tags in a SrcML file use the XML tree structure to
represent scope nuances from a Java or C++ file. Tags present in the same hierarchy give
context to another tag, such as the tag "name", which describes the name of the identifier,
or the name of its type. For example, first, we have a tag representing a class, followed by a
tag corresponding to its name and a specifier tag, explicating if a class is private, public,
etc. A SrcML file preserves all source code from the original file, including comments,
formatting, and preprocessor directives, allowing us to easily receive information about
the original file.

The SrcML source code representation using markup tags facilitates the structural
vision of the code itself and enables the usage of queries to discover insightful information
about the code. Xpath queries are used to achieve this objective, for instance, a XPath
query can be used to discover identifiers that are declared within a certain method or
code location. With the aid of these queries, it could be possible to determine the scope
of identifiers with information such as their type. Because the SrcML file is an element
tree, it is easy to perceive different scopes in the original code to the hierarchy in an XML
file. If an identifier is declared within a "if" tag, the tag that represents the identifier is a
child of the "if" tag, and could be found using XPath queries.

3.5.2 Identifying Identifier Names

In order to make those SrcML file useful, a tool was developed to be capable of
reading and understanding XML logic and syntax to extract identifiers correctly. Not
all markup tags contain relevant information for our study, and to access those that are
indeed relevant, our tool must the capable of following the logic behind an XML file,
including the distinction between different levels of the tree structure, and identify the
names of the tags that carry relevant information. Our tool is based on several XPath
queries, recognizing code locations in which identifiers were declared.

The first thing our tool was designed to do is perform an XPath query that returns
the content of all classes present in a project. This action will leverage our study with
information about classes themselves, and the quality of identifiers declared within the
class. Later in this study it will be displayed a level of naming quality based on each class a
project had. After retrieving the content of a class, another XPath query collects all of its
attributes and types. If there are methods inside the class, the variables declared within
the method are collected in an analog way. The last step is to perform an XPath query for
every programming command, and in the same way, identify and collect variables declared
in those scopes. With that logic is possible to gain information if there is any difference
in naming quality in different scopes in the code. Performing a different XPath query for
classes, methods, and commands allows our tool to correctly assign an identifier to a class
or method.

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 24

3.6 Naming Practice Categories
The categories presented in this subsection are a compilation of programmers’

practices reported in several studies (ARNAOUDOVA, 2016),(BENIAMINI, 2017) (AL-
SUHAIBANI, 2021), and books (MARTIN, 2008),(DILEO, 2019). Inspired by antipattern
templates (BROWN, 1998), in order to explain the naming practice categories, we frame
the discussion of each category in terms of the following elements: category name, ex-
amples, motivation (why), consequences of the naming practice, and recommendations.
All the categories were created exclusively for this study, with the purpose of identifying
common bad naming practices and summarizing them into different categories. We de-
sign each category by first identifying the cause of misunderstanding in identifier naming;
for example, identifiers consistent with single letters can produce misinformation. Hence,
we proceed by adding examples, consequences, and recommendations to the category.
The categories involve the practice of using numbers somewhere in the name, includ-
ing the length of the name and its relation to its type. Using numbers in an identifier
name, depending on the context, can be harmful to its pronunciation and comprehension
(MARTIN, 2008). The categories that consider the length of the identifier are based on
the state that shorter identifiers take a longer time to be understood than bigger ones
(HOFMEISTER, 2017). Finally, using the type’s name in the identifier name is a practice
that is usually recommended in IDE’s (Integrated Development Environment) (DEIS-
SENBOECK; PIZKA, 2006), and can also possibly prejudice code’s comprehension by
not aiding the intention behind the naming, and confuse the reader with the addition of
noise words.

Listing 3.1 shows an actual code snippet from a Java project used in this study,
which are some "in the wild" examples of naming categories. First, the method name
"getUriBuilderWithoutQueryParams" is an extension of its type "UriBuilder." Notice that
the information about the method being related to the Uri building has already been
told by the type, and adding it to the identifier increases its complexity needlessly. The
method signature can inform the reader by combining the type and the name without the
need for repeating words. The first variable in the snippet also has a problem involving its
type: they are the same. The identifier called "partialUpdateEntityRequest" is identical
to its type, and it does not create any new information for the reader. This name lacks
intention behind its naming, and it is solely a copy of the type’s name. The second variable
is called "b". The problem with that name is also about the need for more intention; the
name is only a single character; it does not represent the intention behind the naming and,
additionally, does not give any information to the reader, possibly causing misinformation.

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 25

Listing 3.1: Java code Example

public UriBuilder getUriBuilderWithoutQueryParams (String [] args)
{

PartialUpdateEntityRequest <?> partialUpdateEntityRequest = getReq ()
UriBuilder b = super . getUriBuilderWithoutQueryParams ()
appendKeyToPath (b, partialUpdateEntityRequest .getId ())

}

3.6.0.1 Kings

This category represents identifier names composed by numbers at the end. The
name Kings comes from adding a number at the end of a King’s name to differentiate
it from others with the same name. That is the logic behind the King’s category; it was
based on developers that use numbers to differentiate identifiers. This practice precludes
a more intentional revealing nomination between identifiers because the one thing that
makes the names different is a number. Example: String name1 and String name2 or
Integer arg1 and Integer arg2 represent arbitrary distinctions as number series. Why:
programmers often opt to employ names that fall into this category to distinguish between
identifiers that appear in the same scope. Consequences: names with numbers at the end,
however, are not very informative and do not represent intentional naming (MARTIN,
2008),(DILEO, 2019) . Recommendation: usually, identifiers represent different things;
whenever that is the case, they should be named accordingly (MARTIN, 2008).

3.6.0.2 Median

This category is a variation of the Kings category and comprises identifier names
composed of numbers in the middle. Example: the names fastUInt64ToBuffer and
base64Bytes contain numbers that might be representing 64 bits values. Why: numbers
in the middle, in general, are used to denote the value stored in the attribute/variable or
even to provide some distinction among similar identifier names. Consequences: names
with numbers in the middle can potentially be harder to search for in the source code,
hard to pronounce, and also can be very similar to other names that differ only in terms
of the numbers that appear somewhere in the middle (MARTIN, 2008). Recommenda-
tions: programmers should use numbers only when necessary and surround numbers with
pronounceable words (MARTIN, 2008).

3.6.0.3 Ditto

The category Ditto consists of identifier names spelled in the same way as their
Types. Example: timeZone is spelled as its Type TimeZone in the same way that the name
object has the same name as its Type (Object). Why: naming identifiers according to the
respective type is an easy option to avoid mental mapping (which usually are associated

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 26

with the problem domain concepts). Consequences: this naming practice might result
in names that are harder to map to their purposes when used in larger scopes, and tend
to cause misinformation when the type name changes but the identifier names do not
(MARTIN, 2008),(ALSUHAIBANI, 2021). Recommendations: avoid using Ditto based
names in very large scopes and/or in contexts in which other names can conflict with
them (MARTIN, 2008).

3.6.0.4 Diminutive

This category includes identifier names that are a derived from segments of their
respective Type names. Example: listener is an example of a name in this category when
its associated Type is named EngineTestListener. The name NFRuleSet ruleSet is also
considered as a chunk of its Type. Why: developers usually rely on short names to avoid
overloading the reader with many concepts. Consequences: when used in large-scope
contexts, names that fall into this category might impair code comprehension (MARTIN,
2008). Recommendations: programmers should use names that properly convey the
identifier’s purpose within the local context and scope (MARTIN, 2008).

3.6.0.5 Cognome

Identifier names in this category contain as an additional suffix or prefix the name
of the respective Type. Example: an identifier nameString includes in its name the the
respective Type name (String). Why: usually programmers resort to adding suffixes in
names to help them remember the Types. Consequences: encoding Type into names
might place an extraneous cognitive load on the programmer (MARTIN, 2008; DILEO,
2019). Recommendations: give identifiers names that are meaningful without having
to resort to adding its Type information to the names (MARTIN, 2008).

3.6.0.6 Index and Shorten

These categories represent similar naming practices: naming an identifier with a
single-letter word. The Index category represents names with one arbitrary letter. Names
in the Shorten category are the starting letters that correspond to their respective Types.
Example: the names Integer i and Integer j falls into the Index category and Person
p and String s are examples of Shorten names. Why: single-letter names are tradition-
ally used to identify counters in loops. Consequences: single-letter names usually are
not easy to locate in the source code (unsearchable) and, when employed in large scopes,
can be hard to be understood (MARTIN, 2008),(DILEO, 2019),(BENIAMINI, 2017).
Recommendations: use single-letter names only in local and small scopes; otherwise,
intent-revealing names are better (MARTIN, 2008).

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 27

3.6.0.7 Famed

This category includes very common names; that is, when naming become arbi-
trary and programmers need to come up convenient defaults. Famed names appear in
almost every source code, potentially, in similar contexts, such as in loop statements
(e.g., for). Example: the word i is a recurrent identifier name used in loops to denote
counters. Why: very popular identifiers are part of the programmer mindset and can
be quickly remembered and understood. Consequences: when used in an indiscrimi-
nate fashion, they may cause misinformation (MARTIN, 2008; ALSUHAIBANI, 2021).
Recommendations: use intent-revealing names even in short-scope contexts (MARTIN,
2008; ALSUHAIBANI, 2021).

3.7 Results
In this section, we present the results of our empirical study around the RQs

described in the previous sections.

Table 3: The top 10 names in Ditto category

Names Num. Num.
Repetitions Projects

Ditto in Java programs

url 2,421 24
list 1,464 32
file 1,444 32
method 1,044 29
context 1,042 25
object 991 29
uri 968 25
node 844 21
type 593 30
date 526 25

Ditto in C++ programs

T 1,227 34
string 1,134 18
uint8_t 564 15
args 247 22
t 231 20
std 143 19
type 141 19
handle 96 17
mode 45 16

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 28

Table 4: The most common names (Famed)

Names Num. Num. Common Num. Num.
Repetitions Projects Type Occurrences Different

Types

Famed in Java programs

value 16,940 40 String 3,345 598
result 12,975 39 int 1,924 887
name 11,374 40 String 10,208 116
i 11,172 39 int 9,794 139
e 10,225 40 Throwable 1,851 589
index 8,224 38 int 7,184 83
key 7,696 35 String 3,187 205
s 7,442 35 String 2,771 318
c 7,337 35 int 1,468 441
t 6,989 37 Throwable 1,210 336
a 6,970 34 float 739 575
b 6,511 38 int 983 486
type 6,162 40 Class 1,523 315
input 6,008 37 String 565 277
p 5,256 35 int 381 443
source 5,025 37 String 765 263
n 5,010 34 int 2,930 165
request 4,719 32 Request 1,489 212
context 4,437 37 Context 1,042 241
id 4,216 36 String 1,523 104

Famed in C++ programs

i 5,421 40 int 2,362 151
value 3,912 40 double 427 268
x 3,856 36 double 858 250
result 3,771 40 T 448 231
index 3,106 38 int 869 88
n 3,027 37 int 729 159
ctx 2,964 22 OpKernelConstruction 622 105
name 2,545 37 string 950 187
type 2,534 40 int 306 426
b 2,370 39 bool 386 219
p 2,351 37 void* 190 412
size 2,285 39 size_t 619 119
context 2,279 34 OpKernelConstruction 501 133
s 2,254 35 Status 427 243
len 2,101 34 Uint32 463 47
node 2,093 30 Node 154 286
v 1,983 38 double 118 253
data 1,832 37 void* 441 211
val 1,821 35 int 192 199
c 1,776 38 char 246 199

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 29

3.7.1 RQ1: How prevalent are the naming practice categories?

To answer RQ1, we analyzed the categories Kings, Median, Ditto, Diminutive,
Cognome, Shorten, and Index regarding how commonly they appear in the projects in
our samples. Tables 1 and 2 list how common each of these categories are across the
80 investigated projects. Considering the identifier names in the chosen Java projects,
20.79% are composed by numbers at the end (Kings), 7.65% have numbers in their middle
(Median), 26.24% are spelled the same as their Types (Ditto), 7.50% contain the hole
Types as a sub-part (Cognome), 4.51% have in their spelling a sub-part of their respective
Types (Diminutive), 3.35% are single-letter names composed of the first letter of their
Types (Shorten), and 29.93% are arbitrary single-letter names (Index). As for the C++
projects in our sample, only approximately 7.28% of the identifier names fall into the
Kings category, 53.24% of the identifiers are named according to their respective types
(Ditto), around 9% follow the Cognome naming practice, 11.86% of the C++ identifier
names are Diminutive, only 2.3% belong to the Shorten category, and approximately 13%
of the C++ identifier names are single-letter names (Index).

These results indicate that the use of single-letter names (Index) is a widespread
naming practice adopted in object-oriented programming. Indeed, (BENIAMINI, 2017)
have observed that single-letter names account for 9–20% of names in Java programs.
As stated by them, the most commonly occurring single-letter name is i, and in some
cases, j is also highly used. In addition, we observed that single-letter names representing
contractions of their respective Type are not so common (Shorten), but are prevalent across
projects (see Section 3.7.3). Programmers seem to be conscious about single-letter names
implications (HOFMEISTER, 2017), and thus avoid choosing such naming practice: this
category represents only 3.35% (14,088) of the examined Java names and 2.3% (7,689)
of the identifier names in C++ projects.

Names that fall into the Ditto naming practice category make up the lion’s share of
all identifier names in C++ (53.24%) projects and are the second most common naming
practice in Java (26.24%) programs. Even though it might be argued that Ditto is a sound
naming practice given that it leads to pronounceable names and many IDEs suggest names
that include the identifier Type, in most cases, the practice does not lead to the creation
of intention-revealing names.

Table 3 lists the five most reoccurring names in such a category for Java and C++
projects. According to Table 3, the use of identifier names as list, object, args, unit8_t
and t are common, but these names do not reveal intentions. When the context is not
explicit or broad, programmers have to trace back what kinds of data are in an identi-
fier named as list or t. These names are generic and hurt the reader’s understanding.
Moreover, whether the Type name changes, then the identifier names will be misleading
as in cases such as string and type. According to (AVIDAN; FEITELSON, 2017), the

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 30

Figure 1: Naming practices distribution over Java programming statements

0

Statements

Pe
rc

en
ta

ge
𝐾𝑖𝑛𝑔𝑠 𝑀𝑒𝑑𝑖𝑎𝑛 𝐷𝑖𝑡𝑡𝑜 𝐷𝑖𝑚𝑖𝑛𝑢𝑡𝑖𝑣𝑒

𝐶𝑜𝑔𝑛𝑜𝑚𝑒 𝐼𝑛𝑑𝑒𝑥 𝑆ℎ𝑜𝑟𝑡𝑒𝑛

Attr

30.84%

13.56%

29.01%

6.20%

9.01%

10.63%

0.76%

For

17.49%

10.60%

13.15%

2.38%

6.32%

45.70%

4.36%

If

7.98%

2.07%

13.28%

2.84%

6.31%

52.99%

14.53%

Method

18.64%

3.46%

27.31%

5.43%

9.36%

32.78%

3.04%

Param

19.53%

8.90%

29.10%

2.95%

4.81%

32.46%

2.24%

Switch

12.16%

2.11%

14.32%

8.59%

4.62%

44.77%

13.42%

While

9.51%

0.91%

13.43%

2.11%

5.98%

55.79%

12.27%

Kings

Median

Ditto

Diminutive

Cognome

Index

Shorten

evil face of names is misleading names.

The habit of choosing names that represent arbitrary sequential distinctions also
revealed a common practice among Java and C++ programmers (Kings). However, number-
series is considered a bad practice in object-oriented programming when creating meaning-
ful names. Number-series naming is a non-informative option, which might disturb code
comprehension and maintainability. The use of numbers in the middle of names, although
prevailing in the studied names, does not appear to be a recurrent naming practice. We
observed that the most common numbers used in the middle of names are: (i) 0, 1, 2, 3,
4, 5, and 6 – as well as meaning some distinction; and (ii) 8, 16, 32 and 64 – meaning
identifiers which might be representing 8, 16, 32 or 64 bits values, respectively.

The scenarios in which programmers choose names that are variants of their Type
are also common. For example, names that contain sub-parts of their Type (Cognome) ac-
count for 7.50% of the identifier names in Java projects and around 9% in C++ programs.
Often, these identifier names represent prefix/suffix (noise words) conventions, such as:
streetString; listPersons; floatArg. Noise words are redundant and should never

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 31

Figure 2: Naming practices distribution over C++ programming statements

0

Statements

Pe
rc

en
ta

ge
𝐾𝑖𝑛𝑔𝑠 𝑀𝑒𝑑𝑖𝑎𝑛 𝐷𝑖𝑡𝑡𝑜 𝐷𝑖𝑚𝑖𝑛𝑢𝑡𝑖𝑣𝑒

𝐶𝑜𝑔𝑛𝑜𝑚𝑒 𝐼𝑛𝑑𝑒𝑥 𝑆ℎ𝑜𝑟𝑡𝑒𝑛

Attr

9.34%

9.16%

20.75%

24.27%

32.68%

3.41%

0.38%

For

21.98%

6.39%

26.81%

4.96%

4.78%

32.42%

2.65%

If

13.31%

3.75%

17.01%

6.42%

2.97%

44.80%

11.75%

Method

22.64%

6.14%

25.17%

8.44%

5.18%

28.61%

3.81%

Param

3.98%

1.68%

65.86%

10.54%

5.65%

10.32%

1.97%

Switch

9.59%

1.26%

20.25%

5.33%

1.26%

51.74%

10.56%

While

8.71%

3.42%

17.17%

7.49%

4.88%

48.90%

9.44%

Kings

Median

Ditto

Diminutive

Cognome

Index

Shorten

appear in names. In general, streetString is not better than street. Short names are
in general easier to comprehend and one of the first things a programmer can do to keep
identifier names short is to avoid adding unnecessary information. In contrast, names that
are part of their Type are not so common. These names are hard to search for and are
not very meaningful in most contexts.

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 32

Table 5: Spearman correlation

3.7.1.1 Very Common Names

In a study about how developers choose names, the authors observed that the
probability of two programmers choosing the same name is low: the median probability
was only 6.9% (FEITELSON, 2020). At the same time, when a specific name is chosen,
it is usually understood and often used by most programmers (AVIDAN; FEITELSON,
2017),(SWIDAN, 2017). In fact, we observed that there are some frequently used names.
The Top-3 most common names in Java programs are (see Table 4): (i) value (16,940
occurrences); (ii) result (12,975 occurrences); and (iii) name (11,374 occurrences). It
might be expected that i is a widespread name (BENIAMINI, 2017), but many other
single letter names are also commonly used across Java projects (e.g., e, s, c, t, a, b, p,
n). Most of them are in the Top-10 most common names. Another interesting observation
is index and key as part of the Top-10 most common names. Overall, some of the common
identifier names in Table 4 are popular in programmer’s vocabulary: value, result, name,
index, key, type, input, source, request, context, id.

As for C++ programs, the three most common identifier names are (i) i (5,421
occurrences), (ii) value (3,912 occurrences), and (iii) x (3,856 occurrences). According to
our results, many of the identifier names shown in Table 4 are widely common in programs
written in Java and C++: value, result, name, index, type, context, i, b, n, p, and s.
It turns out that value appears among the top three most used identifier names both in
Java and C++. Java programmers seem to have a slight preference for the names result
and name in comparison to C++ programmers. As mentioned, some single-letter names
are widely used by programmers in both languages, being i the most commonly used

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 33

single-letter name in Java and C++.

Further analysis of the names in Table 4 and their corresponding most common
Types led to interesting results about programmers’ rationale when programming in Java
and C++. As noted by (BENIAMINI, 2017), analyzing this link yields interesting results
because it is possible to understand the meaning related to names frequently used by
programmers, especially single-letter names. We can observe most identifier names are
associated with int variables (e.g., result, i, index, c, b, p, n) or String Types (e.g.,
value, name, key, s, input, source, id). As shown in a survey conducted by (BENI-
AMINI, 2017), single-letter names such as i and j are understood as counter variables
(integer values) and most of the time used as loop control variables.

There are other interesting findings. For example, in Java programs the single-letter
name e, is usually correlated with error and exception (BENIAMINI, 2017). Our results
show that e is mainly associated with the Throwable Type. In the same way, s is a single-
letter name essentially associated with String (see Table 4). However, we also found
some counter-intuitive results. For instance, contrary to our expectations, we observed
that in programs written in Java the single-letter name b is not linked with boolean
values (BENIAMINI, 2017) but with integer values. Additionally, the identifier name t is
mainly associated with Throwable; which is somewhat counter-intuitive because t is also
often used to name and convey the idea of time-related constant values and variables or
variables that hold temporary values (BENIAMINI, 2017).

Other names that seem to have meaningful associations are the following: type,
which is generally associated with the Class Type; context and request, which are often
associated with the Context and Request Types.

Our results would seem to suggest that the underlying meaning of the identifier
names vary a lot. For example, the name result was associated with 855 different Types.
The name i, which intuitively is associated with index (int), also assumes other 139
different Types. Nevertheless, in most cases (9,794 out of 11,172), this name is associated
with integer values. The name name seems to be usually associated with the String Type:
10,208 out of 11,374 occurrences are associated with String.

3.7.2 RQ2: Are there context-specific naming practices categories?

To answer the RQ2, we investigated the predominance of the naming practice
categories over particular contexts (attribute, parameter, method, for, while, if,
and switch). The results are present in Figure 1 and 2.

We found that while some naming practices (ALLAMANIS, 2014) acknowledge
the use of single-letter words (Index and Shorten) to name a local, temporary or loop
variable, this practice is much more pervasive than any other. Except for naming attributes

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 34

Java and C++, in which case Java programmers prioritize the use of Ditto and Kings
naming practices while C++ programmers tend to use Cognome, Ditto, and Diminutive.
Surprisingly, names with numbers at the end appear 30,655 times in our study as Java
attributes and only 4,066 in class attributes in C++ projects. Especially in large-scope
contexts, Kings names should always be avoided by programmers. In contrast, using Ditto
names in such a case seems to be a reasonable choice. IDEs (e.g., Eclipse and Intellij IDEA)
usually analyze the scope and generate suggestions from the current context and these
suggestions often include information regarding the respective Type.

Focusing on particular contexts, we might see that programmer’s practices are
context-specific. For example, the use of practices that might result in meaningful names
(e.g., Ditto) is more common in long-scope contexts (attribute and method) than in
short-scope ones (if, for, while, switch). Especially in C++ projects, Ditto makes
up for the lion’s share of the parameters names. Java and C++ programmers seem
to adopt less descriptive names in the context of switch and while statements. As
shown in Figures 1 and 2, Index names appear more often inside contexts surrounded
by if, for, switch, and while statements, where their occurrence is widely and ac-
cepted (KERNIGHAN; PIKE, 1999; BENIAMINI, 2017). However, as observed by (AVI-
DAN; FEITELSON, 2017), hiding the plural names using single-letter words may cam-
ouflage the meaning of the respective identifier. It might not be a natural interpretation
that the identifier stores more than one object.

The predominance of Kings and Index as parameter names do not agree with the
findings of (AVIDAN; FEITELSON, 2017). Their experiment indicated that parameter
names contribute more to code comprehension than any other names (e.g., attributes or
local variables). Since parameters are part of the method header and the starting point of
the comprehension task, programmers pay special attention to parameter names in order
to better understand the method behavior (AVIDAN; FEITELSON, 2017). However,
every naming practice category we studied are used to name parameters, although, as
observed by (AVIDAN; FEITELSON, 2017), parameter names are often more carefully
chosen by programmers.

3.7.3 RQ3: Do the naming practice categories carry over across different Java
and C++ projects?

In hopes of answering the RQ3, we analyzed the prevalence of naming practice
spanning multiple projects. Tables 1 and 2 list the categories by projects. All selected
projects turned out to have problematic names, which suggests that the investigated nam-
ing category practices are probably not uncommon. Even the most popular projects have
naming practices which might result in meaningfulness names (e.g., fastjson, jenkins,
junit4, mockito, retrofit, spring-boot, tomcat, tensorflow, and pytorch).

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 35

As highlighted in Tables 1 and 2, Ditto and Index are very common naming prac-
tices. Especially, these practices are dominant (representing more than 50% of analyzed
identifiers) in some projects. For example, Ditto names are widely used in Java and
C++ programs, accounting for 85.08% in riptide (Java), 80.78% of the identifier names
in clickhouse (C++), 78.26% in webmagic (Java), 72.93% of the names in kdenlive
(C++), 68.60% in mysql-server (C++), 68.32% in percona-server (C++), 65.99% in
keywhiz, and 54.46% in aeron. The problem with Ditto is that when the Type changes,
the identifier name might lose its meaning (SCALABRINO, 2017). Index names appear
to be more common in Java programs. For instance, these identifier names account for
58.93% of all identifiers in boofcv (Java) and 66.53% in rxjava (Java). It would seem
that Index names are not very common in C++: proxysql which is the program in
which Index names are most common, has around 34.7% of the identifier names following
this naming practice. rocksdb and citra also include a substantial amount of identifiers
named according to the Index naming practice: 34.71% and 30.30%, respectively.

In some isolated cases, some name practice seems to be dominant, as Kings in
fastjson (49.88%) and libgdx (47.83%). On the other hand, the naming practices Cog-
nome, Diminutive and Shorten are not dominant in any specific project. Specifically,
Shorten seems to be a naming practice that most programmers try to avoid: program-
mers avoid naming identifiers using the first letter of the Type. As mentioned, Shorten
names usually are not easy to search for in the source code and, when employed in large-
scope contexts, they tend to be hard to understand.

To better comprehend whether the project’s characteristics may influence the
prevalence of one practice, we looked at the correlation between common software metrics
(e.g., lines of code, number of contributors, and number of commits) and the predomi-
nance of the naming practice categories. Table 5 summarizes the Spearman test results.
The results show no representative correlation between the investigated project charac-
teristics and the categories of naming practices. Overall, we can observe a low correlation
between the number of contributors and the prevalence of any category. One might sur-
mise that an increase in the number of programmers might be beneficial towards removing
bad naming practices. However, this does not seems to be the case. The same rationale
might be employed to the number of commits: whether the project evolves, the quality of
the identifiers names might evolve or decay. Though, in contrast to (DEISSENBOECK;
PIZKA, 2006), which stated that identifiers names are subject to decay during software
evolution, the results show that it might not seem to be the case. Especially observing
LoC, we might observe some compelling correlations. For example, there is a negative cor-
relation (rho -0.517) between size and the category Ditto (for Java programs). Therefore,
names spelled in the same way as their respective Types tend to be way more common
in small projects. On the other hand, large Java projects might tend to contain names
involving practices such as Index (rho 0.341) and Shorten (rho 0.387).

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 36

Figure 3: Naming practices distribution over programming statements

0

Frequency

Pe
rc

en
ta

ge
𝐾𝑖𝑛𝑔𝑠 𝑁𝑒𝑣𝑒𝑟 𝑅𝑎𝑟𝑒𝑙𝑦 𝑂𝑐𝑐𝑎𝑠𝑖𝑜𝑛𝑎𝑙𝑙𝑦 𝑂𝑓𝑡𝑒𝑛

Kings

30.8%

48.1%

17.3%

3.8%

0.0%

Median

73.1%

19.2%

7.7%

0.0%

0.0%

Ditto

50.0%

9.6%

17.3%

15.4%

7.7%

Diminutive

11.5%

11.5%

46.2%

21.2%

9.6%

Cognome

36.5%

28.8%

19.2%

13.5%

1.9%

Index

25.0%

21.2%

26.9%

17.3%

9.6%

Shorten

40.4%

26.9%

19.2%

13.5%

0.0%

Never

Rarely

Occasionally

Often

VeryOften

As shown in Table 1, Ditto and Index are the most dominant practice across Java
projects. Considering only the two categories, they account for 235,886 identifier names,
representing 56.17% of all analyzed names in Java projects. These results are consistent
with the findings of (BENIAMINI, 2017). Although code conventions and style guides may
constrain identifier naming practices, programmers seem to be heavily influenced by IDEs
content assist capabilities. As programmers work in the editor, content assist analyzes their
code and recommended elements to complete partially entered statements. Therefore, it
is indispensable to provide more sophisticated and context-aware capabilities to assist
programmers in naming and renaming identifiers (JIANG, 2019; ISOBE; TAMADA, 2018;
PERUMA, 2018; PERUMA, 2019). Finally, programmers would seem to prioritize single-
letters names in contexts where they are widely accepted (see Section 3.7.2).

Figure 4: Naming practices distribution over programming statements

Kings Median Ditto Diminutive Cognome Index Shorten

14
4

19
27

21

4
10

24

11

23

39
30

6

19

8
0

13
20

10

43

13
4 0

12
18

12 13
8

16

39

22

7
17

9

22

Attribute Method Loop Conditional None

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 37

3.7.4 RQ4: What is the perception of software developers about the investi-
gated naming categories?

This section presents the results of our survey with 52 programmers. We start by
characterizing the respondents (Section 3.7.4.1). Next, we assess the relevance of the nam-
ing practice categories by how often they are used by programmers (Section 3.7.4.2). We
then analyze how naming practice categories adoption varies according to programming
statements (Section 3.7.4.3).

3.7.4.1 Respondents’ Demographics

Figure 5 depicts the respondents’ experience in software development and the cor-
responding frequencies and percentages. A total of 5.8% of the respondents have less than
two years of experience, while 55.8% have more than five years of experience, suggesting
that most survey respondents are experienced programmers. Moreover, we seem to have
collected a reasonably balanced distribution of programmers in terms of education level.
Figure 3.7.4.1 shows the respondents’ education level. As the majority of the respondents
(73%) have a graduate degree, we claim that it increases our confidence in the validity of
the responses.

3.7.4.2 Most Commonly Used Naming Practices

The respondents were queried about how often they choose identifier names con-
forming to the naming practice categories. A five-point Likert scale was used to capture
respondent opinions ranging from “Never” to “Very Often”. Figure 3 shows how frequently
respondents have been using each naming practice category. In our sample, Diminutive is

Figure 5: Respondents Demographics

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 38

the most frequently used naming practice category (i.e., used “Often” or “Very Often”),
followed by Index and Ditto. This result seems to align well with our observation about
the prevalence of the naming practices in open-source object-oriented programming.

Notably, from the survey, we can make the following observations:

∙ All the respondents adopt at least one naming practice category “Occasionally” or
“Often”, with 26% (13) of the respondents claiming to adopt at least one naming
practice “Very Often”.

∙ Diminutive is the most adopted naming category practice by respondent. However,
as we could observe, this naming practice category is not so prevalent in the analyzed
object-oriented projects as claimed by the survey programmers.

∙ Median is the least adopted naming practice category (see Figure 3), with just
26% (14) of the respondents using it “Rarely” or “Occasionally”. The lower use of
this naming practice corroborates our observation that programmers seem to be
conscious of this harmful practice in object-oriented programming.

∙ Ditto is not a widespread naming practice among the survey respondents. Only 12
out of 52 programmers (23%) indicated a tendency to write identifier names spelled
in the same way as their Types; which do not ratify our previous observations about
the prevalence of Ditto across Java and C++ projects (see Section 3.7.3). This
contrasting result suggests that programmers might be not aware of their general
use of naming practices. Moreover, this might also be a sign that naming assistant
features present in modern IDEs do not influence the respondents.

3.7.4.3 Most Commonly Used Naming Practices According to Context

In order to specify the location in which programmers mainly observe the occur-
rences of the naming practice categories, the respondents were allowed to select multiple
locations (attribute, method, loop, conditional, and none). This is expected to be
done by remembering instances of naming practice categories encountered by respondents
in their software development works.

The two most common answers from the respondents were: attribute and method
(see Figure 4). These findings share similarities with those presented in Section 3.7.2,
wherein 56% of the names occur as attribute or are declared in the context of method.
One notary exception is Index, in which case, 43 out of 52 respondents indicated that this
naming practice occurs mainly inside contexts surrounded by loop statements (for or
while). Indeed, as observed by (BENIAMINI, 2017), single-letter names can be used
safely in a short-scope context. Finally, as expected, the majority of respondents (39 out
of 52) indicated that they usually do not observe Median in their day-life (see Figure 4).

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 39
Ta

bl
e

1:
Ja

va
pr

og
ra

m
s

us
ed

in
ou

r
ex

pe
rim

en
t.

Pr
oj

ec
t

Lo
C

C
on

tr
ib

ut
or

s
C

om
m

its
K

in
gs

M
ed

ia
n

D
itt

o
C

og
no

m
e

D
im

in
ut

iv
e

Sh
or

te
n

In
de

x
To

ta
l

To
ta

l
%

To
ta

l.
%

To
ta

l.
%

To
ta

l.
%

To
ta

l.
%

To
ta

l.
%

To
ta

l.
%

ae
ro

n
10

8,
44

2
86

14
,4

09
60

6
6.

34
45

0
4.

71
5,

20
5

54
.4

6
93

3
9.

76
1,

93
2

20
.2

1
11

4
1.

19
31

8
3.

33
9,

55
8

an
dr

oi
du

til
co

de
39

,0
30

32
1,

31
7

17
9

7.
74

21
0.

91
1,

17
0

50
.5

6
38

5
16

.6
4

73
3.

15
77

3.
33

40
9

17
.6

8
2,

31
4

ar
ch

un
it

10
0,

27
6

49
1,

49
9

91
3.

07
16

0.
54

1,
74

4
58

.8
6

59
6

20
.1

1
30

3
10

.2
3

9
0.

30
20

4
6.

88
2,

96
3

bo
of

cv
65

0,
01

9
14

4,
52

0
7,

48
3

23
.1

9
1,

69
6

5.
26

1,
57

3
4.

87
26

6
0.

82
88

0
2.

73
1,

35
4

4.
20

19
,0

17
58

.9
3

32
,2

69
bu

tt
er

kn
ife

13
,2

79
97

1,
01

6
13

5
21

.9
5

8
1.

30
35

8
58

.2
1

68
11

.0
6

14
2.

28
4

0.
65

28
4.

55
61

5
co

re
nl

p
58

1,
37

4
10

7
16

,2
80

2,
37

2
9.

53
83

1
3.

34
4,

28
1

17
.2

0
3,

86
4

15
.5

2
61

0
2.

45
1,

62
2

6.
52

11
,3

10
45

.4
4

24
,8

90
dr

op
w

iz
ar

d
74

,2
15

36
4

5,
78

9
53

1.
85

14
0.

49
1,

99
3

69
.6

4
34

3
11

.9
8

26
9

9.
40

29
1.

01
16

1
5.

63
2,

86
2

du
bb

o
17

9,
47

7
38

6
4,

68
1

75
4

6.
39

81
0.

69
6,

98
3

59
.1

9
1,

09
6

9.
29

64
4

5.
46

36
9

3.
13

1,
87

0
15

.8
5

11
,7

97
ev

en
tb

us
8,

36
9

20
50

7
4

1.
33

0
0.

00
19

5
65

.0
0

59
19

.6
7

23
7.

67
1

0.
33

18
6.

00
30

0
fa

st
jso

n
17

9,
99

6
15

8
3,

86
3

8,
20

5
49

.8
8

77
0.

47
4,

25
5

25
.8

7
1,

26
4

7.
68

24
3

1.
48

38
7

2.
35

2,
01

9
12

.2
7

16
,4

50
gl

id
e

76
,4

18
12

9
2,

58
3

10
5

2.
77

22
0.

58
2,

44
2

64
.4

7
62

9
16

.6
1

19
4

5.
12

45
1.

19
35

1
9.

27
3,

78
8

gu
ic

e
72

,9
80

59
1,

93
1

17
8

2.
85

46
0.

74
3,

87
1

61
.9

2
1,

04
3

16
.6

8
21

6
3.

45
51

0.
82

84
7

13
.5

5
6,

25
2

hd
iv

30
,6

31
11

1,
08

6
10

6
9.

72
11

1.
01

57
3

52
.5

2
63

5.
77

17
7

16
.2

2
31

2.
84

13
0

11
.9

2
1,

09
1

ic
al

4j
24

,1
30

35
2,

30
3

13
2

11
.2

2
15

1.
28

68
2

57
.9

9
16

7
14

.2
0

48
4.

08
2

0.
17

13
0

11
.0

5
1,

17
6

j2
ob

jc
1,

81
0,

27
4

75
5,

28
4

5,
52

3
10

.1
3

86
6

1.
59

9,
30

2
17

.0
6

4,
75

0
8.

71
1,

27
6

2.
34

3,
97

8
7.

30
28

,8
27

52
.8

7
54

,5
22

je
nk

in
s

17
5,

15
0

65
4

31
,1

56
65

8
6.

15
16

1
1.

51
3,

27
3

30
.6

1
79

4
7.

43
31

4
2.

94
18

5
1.

73
5,

30
8

49
.6

4
10

,6
93

jtk
20

4,
10

5
9

1,
37

3
2,

62
7

13
.0

3
4,

55
7

22
.6

0
1,

00
8

5.
00

55
0.

27
37

0.
18

1,
06

8
5.

30
10

,8
13

53
.6

2
20

,1
65

ju
ni

t4
31

,2
42

15
1

2,
47

4
55

3.
15

18
1.

03
98

5
56

.3
8

24
8

14
.2

0
32

1.
83

47
2.

69
36

2
20

.7
2

1,
74

7
ke

yw
hi

z
23

,3
37

32
1,

53
8

89
5.

67
23

1.
46

1,
03

6
65

.9
9

17
8

11
.3

4
90

5.
73

14
0.

89
14

0
8.

92
1,

57
0

lib
gd

x
27

2,
51

0
50

5
14

,6
61

49
,3

15
47

.8
3

21
,6

53
21

.0
0

11
,8

00
11

.4
4

1,
83

1
1.

78
2,

04
1

1.
98

2,
25

2
2.

18
14

,2
15

13
.7

9
10

3,
10

7
lit

ie
ng

in
e

75
,8

77
20

3,
32

4
31

6
11

.8
6

46
1.

73
77

1
28

.9
4

44
8

16
.8

2
25

3
9.

50
21

0.
79

80
9

30
.3

7
2,

66
4

lo
tt

ie
-a

nd
ro

id
16

,2
58

10
2

1,
29

2
80

7.
41

10
4

9.
64

44
2

40
.9

6
14

5
13

.4
4

12
6

11
.6

8
21

1.
95

16
1

14
.9

2
1,

07
9

m
oc

ki
to

55
,7

51
22

0
5,

52
3

23
4

9.
87

12
0.

51
1,

28
8

54
.3

5
28

5
12

.0
3

12
6

5.
32

38
1.

60
38

7
16

.3
3

2,
37

0
m

pa
nd

ro
id

ch
ar

t
25

,2
32

69
2,

06
8

13
4

6.
85

36
1.

84
38

5
19

.6
9

23
2

11
.8

7
15

5
7.

93
38

1.
94

97
5

49
.8

7
1,

95
5

nu
tc

h
14

1,
71

0
43

3,
21

5
23

6
7.

68
28

0.
91

1,
35

3
44

.0
1

46
7

15
.1

9
11

3
3.

68
16

4
5.

34
71

3
23

.1
9

3,
07

4
ok

ht
tp

48
,4

65
23

5
4,

84
8

45
5

16
.0

1
39

1.
37

1,
90

2
66

.9
2

16
1

5.
67

12
6

4.
43

21
0.

74
13

8
4.

86
2,

84
2

or
ie

nt
ee

r
55

,6
81

12
2,

27
4

63
2.

68
27

1.
15

1,
12

2
47

.7
7

58
4

24
.8

6
39

5
16

.8
2

22
0.

94
13

6
5.

79
2,

34
9

pi
ca

ss
o

9,
13

6
97

1,
36

8
64

8.
82

36
4.

96
54

6
75

.2
1

27
3.

72
10

1.
38

7
0.

96
36

4.
96

72
6

re
st

-a
ss

ur
ed

73
,5

11
10

5
2,

02
0

12
1

5.
85

32
1.

55
1,

44
0

69
.5

7
28

8
13

.9
1

10
7

5.
17

14
0.

68
68

3.
29

2,
07

0
re

st
.li

52
3,

97
2

89
2,

61
7

2,
15

8
9.

26
53

3
2.

29
10

,0
54

43
.1

6
4,

71
2

20
.2

3
3,

45
8

14
.8

4
23

7
1.

02
2,

14
3

9.
20

23
,2

95
re

tr
ofi

t
26

,5
13

15
2

1,
86

5
60

2.
49

7
0.

29
1,

69
1

70
.1

4
35

2
14

.6
0

18
0.

75
6

0.
25

27
7

11
.4

9
2,

41
1

rip
tid

e
27

,0
72

18
2,

13
1

4
0.

52
0

0.
00

65
0

85
.0

8
22

2.
88

46
6.

02
8

1.
05

34
4.

45
76

4
rx

ja
va

46
8,

95
7

27
7

5,
87

7
2,

37
1

10
.2

5
34

0.
15

4,
27

5
18

.4
8

57
3

2.
48

11
5

0.
50

37
3

1.
61

15
,3

87
66

.5
3

23
,1

28
sp

rin
g-

bo
ot

34
3,

13
8

80
4

32
,0

96
44

3
2.

74
95

0.
59

10
,8

68
67

.2
4

1,
35

4
8.

38
3,

00
2

18
.5

7
91

0.
56

30
9

1.
91

16
,1

62
to

m
ca

t
34

3,
70

3
61

23
,1

40
1,

14
2

6.
68

26
3

1.
54

7,
37

4
43

.1
6

1,
67

5
9.

80
69

6
4.

07
84

6
4.

95
5,

08
9

29
.7

9
17

,0
85

tw
el

ve
m

on
ke

ys
99

,4
18

42
1,

33
4

37
9

8.
43

12
3

2.
73

91
2

20
.2

8
80

8
17

.9
6

58
8

13
.0

7
32

7
7.

27
1,

36
1

30
.2

6
4,

49
8

un
ire

st
-ja

va
15

,9
79

43
1,

60
3

12
1.

75
1

0.
15

31
0

45
.1

9
58

8.
45

23
3.

35
22

3.
21

26
0

37
.9

0
68

6
we

bm
ag

ic
12

,9
26

40
1,

11
9

28
2.

87
3

0.
31

76
3

78
.2

6
80

8.
21

27
2.

77
10

1.
03

64
6.

56
97

5
xc

ha
rt

24
,4

06
50

1,
45

1
11

9
7.

93
31

2.
07

62
8

41
.8

4
33

8
22

.5
2

50
3.

33
26

1.
73

30
9

20
.5

9
1,

50
1

zx
in

g
10

7,
06

4
10

9
3,

58
2

20
8

9.
78

13
7

6.
44

69
5

32
.6

8
26

7
12

.5
5

10
8

5.
08

15
7

7.
38

55
5

26
.0

9
2,

12
7

To
ta

l
7,

11
1,

47
0

5,
51

9
21

7,
86

9
87

,2
97

20
.7

9
32

,1
53

7.
65

11
0,

19
8

26
.2

4
31

,5
08

7.
50

18
,9

58
4.

51
14

,0
88

3.
35

12
5,

68
8

29
.9

3
41

9,
89

0

Chapter 3. Exploring Naming Practices in Object-Oriented Programming 40
Ta

bl
e

2:
C

+
+

pr
og

ra
m

s
us

ed
in

ou
r

ex
pe

rim
en

t.

Pr
oj

ec
t

Lo
C

C
on

tr
ib

ut
or

s
C

om
m

its
K

in
gs

M
ed

ia
n

D
itt

o
C

og
no

m
e

D
im

in
ut

iv
e

Sh
or

te
n

In
de

x
To

ta
l

To
ta

l
%

To
ta

l.
%

To
ta

l.
%

To
ta

l.
%

To
ta

l.
%

To
ta

l.
%

To
ta

l.
%

as
io

19
6,

65
6

53
3,

03
4

13
5

3.
65

27
0.

73
1,

66
4

44
.9

9
32

0.
87

65
7

17
.7

6
22

0
5.

95
96

4
26

.0
6

36
99

as
sim

p
61

4,
92

6
46

2
10

,9
34

78
6.

76
74

6.
41

73
9

64
.0

4
10

0.
87

94
8.

15
13

1.
13

14
6

12
.6

5
1,

15
4

bi
tc

oi
n

54
1,

47
4

85
3

32
,6

61
46

4.
58

27
2.

69
62

1
61

.7
9

8
0.

80
11

1.
09

39
3.

88
25

3
25

.1
7

1,
00

5
bl

ue
m

at
te

r
81

2,
82

2
2

5
3,

97
2

29
.2

0
1,

35
0

9.
92

1,
89

3
13

.9
1

1,
56

0
11

.4
7

50
6

3.
72

68
5

5.
03

3,
63

9
26

.7
5

13
,6

05
ca

lli
gr

a
1,

60
2,

45
6

26
3

10
1,

57
3

47
3.

41
2

0.
15

74
3

53
.9

2
13

7
9.

94
26

7
19

.3
8

14
1.

02
16

8
12

.1
9

1,
37

8
ch

as
te

58
7,

47
3

25
5,

38
4

2,
95

4
40

.4
6

88
2

12
.0

8
67

3
9.

22
66

7
9.

14
47

0
6.

44
14

0.
19

1,
64

1
22

.4
8

7,
30

1
ci

tr
a

42
8,

96
6

22
2

9,
14

1
27

5.
11

19
3.

60
25

5
48

.3
0

4
0.

76
36

6.
82

27
5.

11
16

0
30

.3
0

52
8

cl
ick

ho
us

e
1,

42
2,

90
3

92
1

83
,4

45
11

4
4.

13
40

1.
45

2,
22

8
80

.7
8

66
2.

39
10

8
3.

92
14

0.
51

18
8

6.
82

2,
75

8
co

re
9,

26
2,

61
0

25
3,

05
8

4,
04

4
5.

29
1,

51
6

1.
98

45
,4

65
59

.4
7

10
,7

41
14

.0
5

10
,7

99
14

.1
3

42
0

0.
55

3,
45

9
4.

52
76

,4
44

fre
ec

ad
4,

84
2,

67
5

38
3

27
,6

47
52

8
6.

94
21

0
2.

76
4,

70
5

61
.8

3
10

0
1.

31
51

3
6.

74
18

1
2.

38
1,

37
2

18
.0

3
7,

60
9

ga
cu

i
50

4,
06

2
3

2,
23

8
8

0.
62

50
3.

91
57

6
45

.0
0

44
3.

44
29

4
22

.9
7

15
1.

17
29

3
22

.8
9

1,
28

0
ge

ck
o-

de
v

28
,3

03
,1

80
4,

91
0

78
5,

72
4

1,
11

6
4.

57
1,

54
8

6.
34

11
,7

37
48

.1
1

2,
56

7
10

.5
2

4,
80

5
19

.6
9

31
1

1.
27

2,
31

4
9.

48
24

,3
98

go
do

t
4,

97
6,

01
3

1,
59

0
41

,5
38

52
5

9.
87

27
0

5.
08

1,
71

1
32

.1
7

12
8

2.
41

1,
93

4
36

.3
6

10
7

2.
01

64
4

12
.1

1
5,

31
9

gr
om

ac
s

1,
68

0,
90

0
74

20
,8

25
89

5.
03

10
4

5.
88

99
4

56
.1

6
38

2.
15

25
0

14
.1

2
54

3.
05

24
1

13
.6

2
1,

77
0

gr
pc

71
7,

44
1

70
8

50
,4

93
76

3.
40

49
2.

19
79

9
35

.7
5

68
3.

04
84

2
37

.6
7

44
1.

97
35

7
15

.9
7

2,
23

5
kd

en
liv

e
20

5,
46

9
94

15
,6

45
4

0.
43

0
0.

00
67

1
72

.9
3

66
7.

17
36

3.
91

34
3.

70
10

9
11

.8
5

92
0

kd
ev

el
op

33
8,

64
8

24
5

42
,6

50
52

4.
70

3
0.

27
72

3
65

.3
7

61
5.

52
93

8.
41

10
0.

90
16

4
14

.8
3

1,
10

6
kr

ita
98

3,
75

4
33

6
57

,7
06

80
5.

93
12

0.
89

57
3

42
.4

8
10

9
8.

08
21

6
16

.0
1

44
3.

26
31

5
23

.3
5

1,
34

9
la

m
m

ps
1,

62
6,

80
8

18
5

29
,3

07
28

1
11

.3
5

56
2.

26
1,

27
2

51
.3

7
19

9
8.

04
16

9
6.

83
85

3.
43

41
4

16
.7

2
2,

47
6

m
ed

ia
pi

pe
23

5,
82

5
2

11
1

11
1.

54
47

6.
58

51
1

71
.5

7
13

1.
82

1
0.

14
26

3.
64

10
5

14
.7

1
71

4
m

lir
75

,8
45

2,
28

5
41

5,
64

4
9

5.
70

18
11

.3
9

83
52

.5
3

24
15

.1
9

8
5.

06
2

1.
27

14
8.

86
15

8
m

on
go

5,
01

5,
37

4
57

1
63

,2
27

91
7

3.
17

38
1

1.
32

14
,6

44
50

.6
6

76
1

2.
63

2,
77

0
9.

58
2,

01
9

6.
99

7,
41

2
25

.6
4

28
,9

04
m

ys
ql

-s
er

ve
r

3,
73

3,
19

3
88

17
0,

22
0

80
3

6.
94

12
4

1.
07

7,
94

1
68

.6
0

71
3

6.
16

94
9

8.
20

14
1

1.
22

90
4

7.
81

11
,5

75
ob

s-
st

ud
io

48
2,

88
6

47
7

10
,4

66
22

3.
42

9
1.

40
42

9
66

.7
2

57
8.

86
59

9.
18

5
0.

78
62

9.
64

64
3

op
en

cv
2,

16
6,

49
3

1,
36

0
31

,6
03

1,
59

8
11

.9
6

85
9

6.
43

5,
67

2
42

.4
5

36
7

2.
75

37
6

2.
81

73
0

5.
46

3,
76

1
28

.1
4

13
,3

63
op

en
offi

ce
6,

89
4,

64
7

21
7,

65
7

3,
97

7
5.

82
1,

70
3

2.
49

39
,6

83
58

.0
6

9,
79

6
14

.3
3

9,
45

3
13

.8
3

33
5

0.
49

3,
39

7
4.

97
68

,3
44

pe
rc

on
a-

se
rv

er
3,

77
7,

21
0

23
8

18
5,

33
4

84
9

7.
35

12
7

1.
10

7,
88

7
68

.3
2

71
2

6.
17

91
3

7.
91

14
2

1.
23

91
4

7.
92

11
,5

44
pr

ox
ys

ql
12

1,
98

9
90

4,
68

0
7

1.
38

12
2.

37
21

9
43

.2
0

10
1.

97
46

9.
07

37
7.

30
17

6
34

.7
1

50
7

py
to

rc
h

1,
79

2,
81

9
2,

15
5

43
,9

44
56

2.
10

11
1

4.
15

1,
47

2
55

.0
7

35
1.

31
16

4
6.

14
11

5
4.

30
72

0
26

.9
4

2,
67

3
qt

ba
se

2,
71

4,
09

7
78

3
55

,2
38

18
5

4.
51

89
2.

17
2,

40
3

58
.5

4
25

8
6.

29
22

9
5.

58
13

2
3.

22
80

9
19

.7
1

4,
10

5
ro

ck
sd

b
49

7,
14

0
62

8
10

,7
66

41
1.

66
52

2.
10

1,
49

4
60

.3
6

21
0.

85
34

1.
37

59
2.

38
77

4
31

.2
7

2,
47

5
se

rv
er

1,
96

7,
12

4
30

0
19

5,
14

5
22

1.
59

2
0.

14
87

4
63

.0
1

40
2.

88
17

2
12

.4
0

33
2.

38
24

4
17

.5
9

1,
38

7
te

ns
or

flo
w

3,
28

4,
59

2
3,

06
8

12
5,

56
0

77
8

5.
67

74
7

5.
45

8,
10

8
59

.1
3

23
5

1.
71

27
9

2.
03

49
9

3.
64

3,
06

7
22

.3
7

13
,7

13
te

rm
in

al
36

0,
71

7
31

3
2,

85
5

15
9

3.
69

49
1.

14
2,

64
0

61
.2

0
11

8
2.

74
31

1
7.

21
12

4
2.

87
91

3
21

.1
6

4,
31

4
vt

k
3,

69
0,

36
9

35
2

81
,2

18
50

0
7.

78
21

6
3.

36
2,

16
7

33
.7

4
14

7
2.

29
1,

13
7

17
.7

0
50

3
7.

83
1,

75
3

27
.2

9
6,

42
3

w
in

ge
t-

cl
i

30
5,

11
6

31
7

53
9

64
2.

56
62

2.
48

1,
25

2
50

.0
0

65
2.

60
11

1
4.

43
31

2
12

.4
6

63
8

25
.4

8
2,

50
4

xb
m

c
1,

09
4,

95
4

78
5

59
,6

41
42

9.
77

2
0.

47
20

8
48

.3
7

29
6.

74
83

19
.3

0
20

4.
65

46
10

.7
0

43
0

ya
rp

1,
02

9,
53

1
77

17
,4

16
45

2.
25

18
0.

90
1,

02
1

51
.1

3
91

4.
56

35
2

17
.6

3
65

3.
25

40
5

20
.2

8
1,

99
7

yu
zu

48
8,

09
9

20
3

20
,8

60
30

19
.6

1
7

4.
58

76
49

.6
7

0
0.

00
6

3.
92

3
1.

96
31

20
.2

6
15

3
ze

ro
tie

ro
ne

13
7,

78
4

58
5,

40
9

34
2.

05
64

3.
85

97
5

58
.7

0
12

0.
72

62
3.

73
56

3.
37

45
8

27
.5

7
1,

66
1

To
ta

l
99

,5
15

,0
40

25
,5

25
2,

83
0,

54
1

24
,3

25
7.

28
10

,9
38

3.
27

17
7,

80
1

53
.2

4
30

,1
09

9.
01

39
,6

15
11

.8
6

7,
68

9
2.

30
43

,4
44

13
.0

1
33

3,
92

1

41

4 Analyzing Identifier Names in CI/CD Con-
text

This chapter will present what is a tool called GitHub Actions, that is used within
CI/CD pipelines, and the development of our Action. This Action will apply our naming
categories mentioned earlier to aid developers to name identifiers.

4.1 GitHub Actions
CI/CD practices can avoid mistakes and bugs during the development process

(FOWLER; FOEMMEL, 2006), making small and consistent commits in short periods of
time, it is possible to apply several tools in those commits. These tools in the GitHub
environment are called GitHub actions. Using GitHub Actions makes it possible to au-
tomatize the whole CI/CD process, with deployment, testing, compiling, and code linter,
among others. 1. A single action is a code that runs in a specific GitHub Actions CI/CD
workflow, like a testing or linting tool. Since this project aims to study properties of iden-
tifier naming, and hence the correlation between those names and code quality (LAWRIE,
2007) (BUTLER, 2010) (DEISSENBOECK; PIZKA, 2006), we proposed to create a static
analysis tool that could enable the developer to visualize the current state of the names
of identifiers at a certain period of time. This tool is used as a base for the eight naming
categories presented earlier. A potential downside follows each naming category in code
quality, and our tool can be used in the early steps of a CI/CD pipeline before the appli-
cation’s build and/or deployment. Thus, identifier names that follow under any category
can be upgraded before creating pull requests or soliciting code reviews from peers.

Poor code quality and the presence of bugs are a downside of poor identifier nam-
ing (BUTLER, 2010). Therefore, these troubles could also be prevented using CI/CD
practices and static analysis within it. By every push made by a developer, our tool scans
the identifier names from the project and shows the developer the current state of the
application in terms of the aforementioned naming categories. Naming impacts the code,
and every naming category significantly impacts the overall code quality. Hence, the im-
portance of discovering the prominence of naming categories in early development stages;
the names that end up being labeled in a category that represents risks in code compre-
hension and quality can be improved in a consistent manner, always keeping up with the
advances of the code. We argue that our tool, applying correct practices of CI/CD, can
have a positive impact on the code’s quality by shedding light on potential problems re-
1 https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions

Chapter 4. Analyzing Identifier Names in CI/CD Context 42

garding comprehension, unsearchable code, misinformation, and difficulty in pronouncing
that can occur when poor identifier naming is found.

4.2 Name Analyzer Action
The Identifier Analyzer Action was developed to increase the level of perception

regarding identifier names in a Java/C++ project and leverages the GitHub actions envi-
ronment to make it easier to locate identifiers that were named poorly in the early stages,
avoiding potential pitfalls in code comprehension. It is possible to visualize names that
can produce problems using our static analysis tool. The tool checks after every push on
the repository, and then the developer is consistently reminded to look for their identifier
names and improve them. Our tool follows the same logical sequence as our study; in
short, first, we convert the source code to a like’ representation, identify and separate the
identifier names, and then, regarding our naming category, each name is assigned to a
specific category based on its intrinsic syntax properties.

In order to be able to call the Id Analyzer Action in a GitHub Actions workflow,
first we had to create a YAML (YAML ain’t markup language) file that describes how our
action image is going to run, which inputs are needed in order to run, and which are the
expecting outputs, and a dockerfile pointing to that file. GitHub allows creating actions in
two different ways: Create an action using Node.js and a Docker container. We created an
Action using a Docker container, creating a reliable and consistent environment because
the user does not have to worry about external tools or dependencies. Also, creating an
action with a Docker container allowed us to use any programming language to create the
action, not just JavaScript. Using Docker, when the action finishes running the workflow,
GitHub creates an image based on our dockerfile file, and this file points to a ShellScript
file. This ShellScript is responsible for all the processes necessary to run our action, from
downloading dependencies, interacting with the file system, and running the process. This
ShellScript is necessarily called "entrypoint.sh".

The first thing our entrypoint file does is download SrcML and convert our target
Java/C++ code into XML files. This will create another folder that contains an XML
file representing all source code, including specific markup tags that carry our desired
identifier names. The next step is also downloading two Python dependencies, Pandas,
which are responsible for analyzing data. After the installation is complete, three Python
files are executed; the first performs several XPath Queries to recover identifier names
and write them in a CSV file, alongside its type and scope. The following two Python
files perform our tool’s true objective, which is checking the names. One file manages the
naming categories, checking the syntax of each name and determining if the name can be
assigned to a category.

Chapter 4. Analyzing Identifier Names in CI/CD Context 43

After the script checks the names, looking for correlations to address them to a
category, the tool finishes its job by displaying the results on the screen. The results are
presented by a list of names that belong to a category. Each category is labeled, and
it is followed by all names in the project that correspond to that specific category, as
well as the name of the file where the names can be found. The filename alongside each
identifier name is crucial for the developer to locate the names more straightforwardly
and to encourage the developer to look up the name and adapt it to each circumstance.

4.2.1 Tool in Action

It was established through the review that being careful with identifier naming
is relevant for code comprehension and quality (BUTLER, 2010) (DEISSENBOECK;
PIZKA, 2006) (LAWRIE, 2007), and that static analysis tools are an efficient manner to
discover possible flaws (PRÄHOFER, 2012). Therefore, visualizing where the bad naming
is happening is a way of shedding light on the problem, making it easier to fix it. With the
aid of CI/CD practices, making short, concise, and smaller commits followed by a testing
pipeline (FOWLER; FOEMMEL, 2006), we can also analyze naming in the pipeline. The
usage of this tool, in a CI/CD context, informs the developer in each push, commit, or
pull request, the names that can be harmful to its quality, allowing the developer to act
quickly and change the names to more suited ones, avoiding naming an identifier with a
name in any naming category mentioned in this study. In the result, we can see the name
of each category, followed by a line consisting of the identifier name and the file it was
declared.

In Figure 6 we can observe how a GitHub Action is triggered and the consequences
of the Action. First of all, the developer can set an Event to trigger a workflow; an Event
can be a pull request, the creation of an issue, a commit, etc. After the Event is triggered,
the workflow is defined in .github/workflows YAML file is executed. Each workflow can
contain one or more different jobs; a job is a set of steps in a workflow that are executed
together inside a runner, the server from Github that actually runs the workflows. A step
can either be an Action or a shell script. Our tool is an Action that can be triggered
by an Event that calls the workflow to run our tool. In order to behave properly, before
setting the step that calls our Name Analyzer Action, the developer needs to first call the
actions/checkout action, an Action from GitHub that enables the runner to access the
files from the repository. To check the result of our Action, the developer needs to enter
the repository from his project and check the Actions section, which displays the current
triggered Workflows and, within it, all jobs and steps that occur, together with the result
from our Action.

Chapter 4. Analyzing Identifier Names in CI/CD Context 44

Figure 6: View of a GitHub Workflow

In (DEISSENBOECK; PIZKA, 2006), it is said that there is a trend in corporate
and proprietary code that they tend to have more specific words regarding their business
than open code ones. Hence, this tool can be reproduced and advanced to capture their
specificity regarding naming. Using this tool as an action of a open code repository, the
predefined naming categories already capture different bad naming practices and explain
the problems their use may occur from, but the final result can be expanded and replicated
to each different scenario by designing a undesired naming pattern, and using the tool in
CI/CD pipeline to check whether any identifier names ends up in the created category,
shedding light to the problem, possibly avoiding bigger ones.

45

5 Conclusion

Coming up with proper identifier names is challenging (BROOKS, 1983). As stated
by (HOST; OSTVOLD, 2007), even though programmers have to name identifiers on a
daily basis, it still entails a great deal of time and thought. To make matters more chal-
lenging, identifier names are pivotal for program comprehension: developers have to go
over identifier names to comprehend the code that they need to update, and poorly chosen
names might hinder source code comprehension (AVIDAN; FEITELSON, 2017). Given
that it has been estimated that identifiers contribute to about 70% of a software sys-
tem’s codebase (DEISSENBOECK; PIZKA, 2006), it cannot be disputed that there is a
need to define what makes up a good identifier as well as to assist developers in nam-
ing identifiers. Similarly, identifying practices that result in poor identifier names might
enhance programmers’ awareness and contribute to improving educational materials and
code review methods. As an initial foray into creating an approach to optimal identifier
naming (i.e., how to assign the proper words to an identifier), we investigated eight nam-
ing practices categories “in the wild”. The categories provide examples of naming practices
from real-world software projects. We illustrated their possible consequences and also out-
lined their prevalence across projects and code contexts (i.e., attribute, parameter,
method, for, while, if, and switch).

Our results, based on 2,603,381 identifier names extracted from 80 real-world Java
and C++ projects and on a survey, would seem to suggest the following:

∙ The eight categories are recurrently found in practice, but two are more common in
Java and C++ projects: naming identifiers with the same name as her Type (Ditto)
and use single-letter names denoting counters (Index). Specifically, Index and Ditto
are by far the most frequently occurring naming practices across Java projects: Index
occurrences account for approximately 30% of all naming practice occurrences in
the examined Java projects, while Ditto occurrences amounted to roughly 27%. As
for C++ programs, Ditto is the most widely used naming practice, which accounts
for around 54% of all naming practice occurrences. Index and Diminutive are also
popular among C++ coders, accounting for 13% and 11% of all naming practice
occurrences. Shorten seems to be the least used naming practice both by Java and
C++ programmers. Additionally, programmers seem to be hardly influenced by
IDE-like features that help them to choose identifier names, although only 12 out of
52 surveyed programmers (23%) acknowledged a tendency to write identifier names
spelled in the same way as their Types;

Chapter 5. Conclusion 46

∙ There are several very common names (e.g., value; result; and name) and recurrent
single-letter names (e.g., i, e, s, c) used in practice. The lion’s share of these names
are used to denote identifiers that store either integer or string values. According
to our results, single-letter identifiers are more commonly used by Java programmers:
i, e, s, c, t, a, b, p, and n would seem to be widely used by programmers. In C++
(in contrast to Java), coders tend to prefer a smaller set of single-letter names: i,
e, s, s, c, t, a, b, p, and n. Thus, differently from Java, in C++ e, c, t, and a do
not rank among the most common single-letter identifier names;

∙ The programmer’s naming practices are context-specific: single-letters names (Index
and Shorten) seem to be more common in short-scope contexts (if, for, while),
although they can also be found in large-scope contexts (e.g., attribute). Results
from our survey questionnaire showed that programmers acknowledge that the Index
naming practice occurs mainly inside contexts surrounded;

∙ Diminutive is the most adopted naming category practice by survey respondents
and Median is the least used naming practice. All the respondents adopt at least
one naming practice category “Occasionally” or “Often”.

∙ We could benefit from including poor naming practices in code reviews. The current
practices follow extensive checklists, but no one addresses naming issues. A more
nuanced take is to consider variable names that depart from commonly used naming
practices as elements that can lead to a source of problems.

We also designed a tool that reads all identifier names in a project and returns
the prevalence of names that belong to any naming category. We argue that with the cor-
rect application of CI/CD practices (FOWLER; FOEMMEL, 2006), our tool can benefit
developers by reassuring the current state of the identifiers based on naming categories.
Each category can reproduce bad practices that damage code quality, and then showing
the developer each name that belongs to a category is an effective way to encourage de-
velopers to change the possible harmful names to names that don’t follow any naming
category practice. Our tool serves as a constant reminder that code evolves, and names
should also evolve alongside it, and the one responsible for that task is the developer
writing the code.

We believe our results have the potential to inspire several future research direc-
tions. Our work highlights the need for further research on how naming practices are
prevalent in source code and how better names can be chosen. In this direction, an as-
piring goal would be to devise tools capable of automatically evaluating and suggesting
renaming opportunities during code review. Similarly, code generation tools can capital-
ize on commonly used naming practices to generate names automatically. Additionally,
since our results would seem to suggest that some identifier names are context-dependent,

Chapter 5. Conclusion 47

we believe that tools (e.g., IDE-based identifier name recommendation system) can take
advantage of context information during software development by constantly monitor-
ing how programmers name identifiers so that they can help developers new to a given
project through the automated recognition of context- and project-specific naming con-
ventions. Therefore, this automated identifier naming assistant can support developers by
identifying inappropriate naming choices and making recommendations. As a result, our
long-term goal is to support the identification of opportunities to rename identifiers and
understand more about programmers’ naming practices. Finally, in future work, we plan
to perform a qualitative study on commits, code changes, and review discussions. An-
other possible future research avenue would be to account for the role of human factors in
choosing identifier names by exploring how programmer experience, team size, and mood
influence naming practices throughout different software projects. Regarding our Name
Analyzer tool, we plan to include new features in future work to enhance the quality of
the results. Artificial intelligence can be used to check the names belonging to a category
and, based on the whole project, suggest proper names to substitute for the original ones.

Although our results give practitioners and researchers alike a good glimpse into
the most common options for naming identifiers in C++ and Java, we did not investigate
how each naming practice contributes, if at all, to improving code comprehension. There-
fore, future research efforts should aim to better understand how these commonly used
naming practices influence readability during code comprehension.

5.1 Threats to Validity
As with most empirical studies, our study also has some practical limitations,

i.e., it is also subject to some threats to its validity. In this section, we present potential
threats and how we tried to mitigate some of those issues. Conclusion and External
Validity One potential threat is that the samples we used in our study might not be
representative of the target population: our analysis took into account 40 open-source
Java projects and 40 C++ projects. To mitigate this threat concerning the conclusion and
generalization of the study results, we tried to select a heterogeneous sample. We think
the impact of this threat is minimal for three reasons: (i) Java and C++ are two popular
programming languages;8 (ii) our sample covers somewhat small code-bases (with less
than 10K LoC) and large-scale ones (with over 100K LoC), and (iii) we selected projects
from a broad range of domains. Thus, we argue that our study can be seen as an initial
step towards identifying trends Java and C++ programmers follow when picking identifier
names. However, given the sizes of our samples, we cannot rule out the possibility that
our results do not reflect how Java and C++ programmers name identifiers. That is,
the results might not be generalizable beyond the study samples and the participants
that took part in our survey. To understand the prevalence of naming categories across

Chapter 5. Conclusion 48

Java and C++ projects, we employed a set of metrics: program size (LoC), number
of commits, and number of contributors. Nevertheless, as with many software metrics,
one potential threat is that these measurements might not be sophisticated enough for
our investigation. Thus, our findings might not carry over to other settings and similar
programming languages. It is also worth emphasizing that context and scope would seem
to play an important role in determining identifier names. For instance, some of the most
common identifier names listed in Table 3 would seem to be context-dependent, e.g., node.
We surmise that is the case because programmers might want to include relevant domain
information when turning concepts into names. Although we tried our best to maximize
the sample heterogeneity during sample selection, we cannot rule out the fact that the
most common domains (e.g., XML file parsing) from which the programs in our sample
were extracted might have an impact on variable naming. Finally, the representativeness
of the survey respondents cannot be guaranteed. Our target population was programmers,
but we did not take any measures to verify the identity of the respondents. However, we
have included two initial questions, which might have permitted us to filter out individuals
not belonging to our target population. There might also exist some other factors that
bias our conclusions. One example is the environment in which the respondents worked.
Another one is whether or not respondents have a correct understanding of each category.
To mitigate the latter, we included in the questionnaire a brief description and an example
of the categories. Future studies can ask respondents to consider this factor and evaluate
how it impacts the naming practice category adoption.

5.2 Construct & Internal Validity
A threat to the construct validity of our study comes from the number of identifier

names we analyzed in our study. It might be argued that a more significant amount of
names may lead to better and more conclusive results. To mitigate this threat we analyzed
2,603,381 identifier names in highly diverse sets of Java and C++ projects. Additionally,
another potential threat has to do with how well the naming practices we identified reflect
extant research and current industry practices. We tried to mitigate this threat by drawing
from previous research, which helped us to get a better understanding regarding whether
or not some of the naming practices we identified are indeed recurring practices. We also
conducted a survey with 52 participants in order to gather programmers’ perceptions
about the use and occurrence of the investigated naming practices. We tried to minimize
possible construct and internal validity associated with the survey by disseminating it
online through multiple websites and online groups; and introducing a brief description
and an example of each question.

49

Bibliography

ALLAMANIS, M.; BARR, E. T.; BIRD, C.; SUTTON, C. Learning natural coding
conventions. In: International Symposium on Foundations of Software Engineering. [S.l.:
s.n.], 2014. Citado 2 vezes nas páginas 10 and 33.

BUTLER, S.; WERMELINGER, M.; YU, Y.; SHARP, H. Exploring the influence of
identifier names on code quality: An empirical study. In: IEEE. 2010 14th European
Conference on Software Maintenance and Reengineering. [S.l.], 2010. p. 156–165. Citado
7 vezes nas páginas 10, 11, 12, 13, 15, 41, and 43.

AVIDAN, E.; FEITELSON, D. G. Effects of variable names on comprehension: An
empirical study. In: 25th International Conference on Program Comprehension. [S.l.:
s.n.], 2017. Citado 7 vezes nas páginas 10, 13, 14, 29, 32, 34, and 45.

HOFMEISTER, J.; SIEGMUND, J.; HOLT, D. V. Shorter identifier names take longer
to comprehend. In: IEEE. 2017 IEEE 24th International conference on software analysis,
evolution and reengineering (SANER). [S.l.], 2017. p. 217–227. Citado 5 vezes nas
páginas 10, 11, 15, 24, and 29.

LAWRIE, D.; MORRELL, C.; FEILD, H. Effective identifier names for comprehension
and memory. Innovations Syst Softw Eng, Springer, v. 3, n. 1, p. 303—-318, 2007.
Citado 3 vezes nas páginas 10, 15, and 43.

FAKHOURY, S.; MA, Y.; ARNAOUDOVA, V.; ADESOPE, O. The effect of poor source
code lexicon and readability on developers’ cognitive load. In: International Conference
on Program Comprehension. [S.l.: s.n.], 2018. Citado na página 10.

DEISSENBOECK, F.; PIZKA, M. Concise and consistent naming. Software Quality
Journal, Springer, v. 14, n. 3, p. 261–282, 2006. Citado 10 vezes nas páginas 10, 11, 13,
14, 24, 35, 41, 43, 44, and 45.

HOST, E. W.; OSTVOLD, B. M. The programmer’s lexicon, volume i: The verbs. In:
International Working Conference on Source Code Analysis and Manipulation. [S.l.: s.n.],
2007. Citado 2 vezes nas páginas 10 and 45.

MARTIN, R. C. Clean code: A handbook of agile software craftsmanship.(2008). Citado
na, p. 19, 2008. Citado 6 vezes nas páginas 10, 14, 24, 25, 26, and 27.

MARCUS, A.; SERGEYEV, A.; RAJLICH, V.; MALETIC, J. I. An information
retrieval approach to concept location in source code. In: IEEE. 11th working conference
on reverse engineering. [S.l.], 2004. p. 214–223. Citado na página 10.

WAINAKH, Y.; RAUF, M.; PRADEL, M. Idbench: Evaluating semantic representations
of identifier names in source code. In: International Conference on Software Engineering.
[S.l.: s.n.], 2021. Citado na página 10.

SCHANKIN, A.; BERGER, A.; HOLT, D. V.; HOFMEISTER, J. C.; RIEDEL, T.;
BEIGL, M. Descriptive compound identifier names improve source code comprehension.
In: International Conference on Program Comprehension. [S.l.: s.n.], 2018. Citado na
página 10.

Bibliography 50

ARNAOUDOVA, V.; PENTA, M. D.; ANTONIOL, G. Linguistic antipatterns: What
they are and how developers perceive them. Empirical Software Engineering, Springer,
v. 21, n. 1, p. 104–158, 2016. Citado 3 vezes nas páginas 10, 13, and 24.

GRESTA, R.; CIRILO, E. Contextual similarity among identifier names: An empirical
study. In: SBC. Anais do VIII Workshop de Visualização, Evolução e Manutenção de
Software. [S.l.], 2020. p. 49–56. Citado na página 11.

GRESTA, R.; CIRILO, E. Say my name! an empirical study on the pronounceability
of identifier names. In: SBC. Anais do IX Workshop de Visualização, Evolução e
Manutenção de Software. [S.l.], 2021. p. 51–55. Citado na página 11.

CHARITSIS, C.; PIECH, C.; MITCHELL, J. Assessing function names and quantifying
the relationship between identifiers and their functionality to improve them. In:
Conference on Learning@ Scale. [S.l.: s.n.], 2021. Citado na página 11.

NYAMAWE, A. S.; BAKHTI, K.; SANDIWARNO, S. Identifying rename refactoring
opportunities based on feature requests. International Journal of Computers and
Applications, Taylor & Francis, p. 1–9, 2021. Citado na página 11.

LAWRIE, D.; MORRELL, C.; FEILD, H.; BINKLEY, D. What’s in a name? a study of
identifiers. In: IEEE. 14th IEEE International Conference on Program Comprehension
(ICPC’06). [S.l.], 2006. p. 3–12. Citado na página 13.

TOFTE, M.; TALPIN, J.-P. Region-based memory management. Information and
computation, v. 132, n. 2, p. 109–176, 1997. Citado na página 13.

TAKANG, A. A.; GRUBB, P. A.; MACREDIE, R. D. The effects of comments and
identifier names on program comprehensibility: an experimental investigation. J. Prog.
Lang., v. 4, n. 3, p. 143–167, 1996. Citado 2 vezes nas páginas 13 and 15.

LI, G.; LIU, H.; LIU, Q.; WU, Y. Lexical similarity between argument and parameter
names: An empirical study. IEEE Access, IEEE, v. 6, p. 58461–58481, 2018. Citado na
página 13.

KAWAMOTO, K.; MIZUNO, O. Predicting fault-prone modules using the length
of identifiers. In: IEEE. 2012 Fourth International Workshop on Empirical Software
Engineering in Practice. [S.l.], 2012. p. 30–34. Citado 2 vezes nas páginas 13 and 15.

FEITELSON, D.; MIZRAHI, A.; NOY, N.; SHABAT, A. B.; ELIYAHU, O.; SHEFFER,
R. How developers choose names. IEEE Transactions on Software Engineering, IEEE,
2020. Citado 2 vezes nas páginas 14 and 32.

SANTOS, R. M. dos; GEROSA, M. A. Impacts of coding practices on readability. In:
Internation Conference on Program Comprehension. [S.l.: s.n.], 2018. Citado na página
14.

CAPRILE, C.; TONELLA, P. Nomen est omen: Analyzing the language of function
identifiers. In: IEEE. Sixth Working Conference on Reverse Engineering (Cat. No.
PR00303). [S.l.], 1999. p. 112–122. Citado na página 14.

GRESTA, R.; CIRILO, E. Contextual similarity among identifier names: An empirical
study. In: SBC. Workshop de Visualização, Evolução e Manutenção de Software. [S.l.],
2020. p. 49–56. Citado na página 15.

Bibliography 51

SKA, Y.; SYED, H. H. A study and analysis of continuous delivery, continuous
integration in software development environment. SSRN Electronic Journal, v. 6, n. 09,
2019. Citado na página 15.

SHAHIN, M.; BABAR, M. A.; ZHU, L. Continuous integration, delivery and deployment:
A systematic review on approaches, tools, challenges and practices. IEEE Access, v. 5,
p. 3909–3943, 2017. Citado 3 vezes nas páginas 15, 16, and 17.

RANGNAU, T.; BUIJTENEN, R. v.; FRANSEN, F.; TURKMEN, F. Continuous
security testing: A case study on integrating dynamic security testing tools in ci/cd
pipelines. In: IEEE. 2020 IEEE 24th International Enterprise Distributed Object
Computing Conference (EDOC). [S.l.], 2020. p. 145–154. Citado na página 16.

LOURIDAS, P. Static code analysis. Ieee Software, IEEE, v. 23, n. 4, p. 58–61, 2006.
Citado na página 16.

PRÄHOFER, H.; ANGERER, F.; RAMLER, R.; LACHEINER, H.; GRILLENBERGER,
F. Opportunities and challenges of static code analysis of iec 61131-3 programs. In: IEEE.
Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies &
Factory Automation (ETFA 2012). [S.l.], 2012. p. 1–8. Citado 2 vezes nas páginas 16
and 43.

ZHENG, J.; WILLIAMS, L.; NAGAPPAN, N.; SNIPES, W.; HUDEPOHL, J. P.; VOUK,
M. A. On the value of static analysis for fault detection in software. IEEE transactions
on software engineering, IEEE, v. 32, n. 4, p. 240–253, 2006. Citado na página 16.

FOWLER, M.; FOEMMEL, M. Continuous integration. 2006. Citado 5 vezes nas
páginas 16, 17, 41, 43, and 46.

SINGH, C.; GABA, N. S.; KAUR, M.; KAUR, B. Comparison of different ci/cd tools
integrated with cloud platform. In: IEEE. 2019 9th International Conference on Cloud
Computing, Data Science & Engineering (Confluence). [S.l.], 2019. p. 7–12. Citado na
página 17.

COLLARD, M. L.; DECKER, M. J.; MALETIC, J. I. srcml: An infrastructure for the
exploration, analysis, and manipulation of source code: A tool demonstration. In: IEEE.
2013 IEEE International Conference on Software Maintenance. [S.l.], 2013. p. 516–519.
Citado na página 20.

BENIAMINI, G.; GINGICHASHVILI, S.; ORBACH, A. K.; FEITELSON, D. G.
Meaningful identifier names: The case of single-letter variables. In: International
Conference on Program Comprehension. [S.l.: s.n.], 2017. p. 45–54. Citado 8 vezes nas
páginas 24, 26, 29, 32, 33, 34, 36, and 38.

ALSUHAIBANI, R. S.; NEWMAN, C. D.; DECKER, M. J.; COLLARD, M. L.;
MALETIC, J. I. On the naming of methods: A survey of professional developers. In:
International Conference on Software Engineering. [S.l.: s.n.], 2021. Citado 3 vezes nas
páginas 24, 26, and 27.

DILEO, C. Clean ruby. Citado na, 2019. Citado 3 vezes nas páginas 24, 25, and 26.

BROWN, W. H.; MALVEAU, R. C.; MCCORMICK, H. W. S.; MOWBRAY, T. J.
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis. 1st. ed. USA:
John Wiley & Sons, Inc., 1998. ISBN 0471197130. Citado na página 24.

Bibliography 52

SWIDAN, A.; SEREBRENIK, A.; HERMANS, F. How do scratch programmers name
variables and procedures? In: International Working Conference on Source Code Analysis
and Manipulation (SCAM). [S.l.: s.n.], 2017. p. 51–60. Citado na página 32.

KERNIGHAN, B. W.; PIKE, R. The Practice of Programming. [S.l.]: Addison-Wesley
Longman Publishing Co., Inc., 1999. Citado na página 34.

SCALABRINO, S.; BAVOTA, G.; VENDOME, C.; LINARES-VÁSQUEZ, M.;
POSHYVANYK, D.; OLIVETO, R. Automatically assessing code understandability:
How far are we? In: International Conference on Automated Software Engineering. [S.l.:
s.n.], 2017. Citado na página 35.

JIANG, L.; LIU, H.; JIANG, H. Machine learning based recommendation of method
names: How far are we. In: International Conference on Automated Software Engineering.
[S.l.: s.n.], 2019. Citado na página 36.

ISOBE, Y.; TAMADA, H. Are identifier renaming methods secure? In: International
Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing. [S.l.: s.n.], 2018. Citado na página 36.

PERUMA, A.; MKAOUER, M. W.; DECKER, M. J.; NEWMAN, C. D. An empirical
investigation of how and why developers rename identifiers. In: 2nd International
Workshop on Refactoring. [S.l.: s.n.], 2018. Citado na página 36.

PERUMA, A.; MKAOUER, M. W.; DECKER, M. J.; NEWMAN, C. D. Contextualizing
rename decisions using refactorings and commit messages. In: International Working
Conference on Source Code Analysis and Manipulation. [S.l.: s.n.], 2019. Citado na
página 36.

LAWRIE, D.; FEILD, H.; BINKLEY, D. Quantifying identifier quality: an analysis of
trends. Empirical Software Engineering, Springer, v. 12, n. 4, p. 359–388, 2007. Citado
na página 41.

BROOKS, R. Towards a theory of the comprehension of computer programs.
International Journal of Man-Machine Studies, v. 18, n. 6, p. 543–554, 1983. Citado na
página 45.

Bibliography 53

.1 Survey Questionnaire

Education level

Experience in software development

1. How often do you choose identifier names with numbers at the end?
Examples: People people1; People people2

Where do you usually see identifier names with numbers at the end?

Attributes Methods Loops Conditionals None

2. How often do you choose identifier names with numbers in the middle?
Example: Char int2char

Where do you usually see identifier names with numbers in the middle??

Attributes Methods Loops Conditionals None

3. How often do you name identifiers after their Type names?
Examples: String string, People people

Where do you usually see identifier names spelled in the same way as their Types?

Attributes Methods Loops Conditionals None

4. How often do you name identifiers as chunk of their respective Type name?
Examples: EngineExecutionTestListener listener

Where do you usually see identifier names as chunk of their respective Type name?

Attributes Methods Loops Conditionals None

5. How often do you includes in identifier names an additional suffix or prefix that is the name of
the respective Type?
Examples: String nameString

Where do you usually see identifier names containing an additional suffix or prefix that is the name of
the respective Type?

Attributes Methods Loops Conditionals None

6. How often do you choose single-letter identifier names?
Examples: Integer j

Where do you usually see single-letter identifier names?

Attributes Methods Loops Conditionals None

7. How often do you name identifiers with the starting letters that correspond to their respective Types?
Examples: People p

Where do you usually see names which are the starting letters that correspond to their respective Types?

Attributes Methods Loops Conditionals None

	Title page
	Approval
	Acknowledgements
	Epigraph
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Background
	Identifier Names
	Naming
	Names in Software Quality

	Continuous Delivery and Integration

	Exploring Naming Practices in Object-Oriented Programming
	Goal and Research Questions
	Project Selection
	Names Extraction
	Survey Design and Sampling
	Extraction of identifiers in source code
	SrcML
	Identifying Identifier Names

	Naming Practice Categories
	Kings
	Median
	Ditto
	Diminutive
	Cognome
	Index and Shorten
	Famed

	Results
	RQ1: How prevalent are the naming practice categories?
	Very Common Names

	RQ2: Are there context-specific naming practices categories?
	RQ3: Do the naming practice categories carry over across different Java and C++ projects?
	RQ4: What is the perception of software developers about the investigated naming categories?
	Respondents' Demographics
	Most Commonly Used Naming Practices
	Most Commonly Used Naming Practices According to Context

	Analyzing Identifier Names in CI/CD Context
	GitHub Actions
	Name Analyzer Action
	Tool in Action

	Conclusion
	Threats to Validity
	Construct & Internal Validity

	Bibliography
	Survey Questionnaire

